
Worm Detection, Early Warning and Response
Based on Local Victim Information

Guofei Gu, Monirul Sharif, Xinzhou Qin, David Dagon, Wenke Lee and George Riley
Georgia Institute of Technology, Atlanta, GA 30332

{guofei, msharif, xinzhou, dagon, wenke}@cc.gatech.edu, riley@ece.gatech.edu

Abstract

Worm detection systems have traditionally focused
on global strategies. In the absence of a global worm
detection system, we examine the effectiveness of lo-
cal worm detection and response strategies. This pa-
per makes three contributions: (1) We propose a sim-
ple two-phase local worm victim detection algorithm,
DSC (Destination-Source Correlation), based on worm
behavior in terms of both infection pattern and scanning
pattern. DSC can detect zero-day scanning worms with
a high detection rate and very low false positive rate. (2)
We demonstrate the effectiveness of early worm warning
based on local victim information. For example, warn-
ing occurs with 0.19% infection of all vulnerable hosts
on Internet when using a /12 monitored network. (3)
Based on local victim information, we investigate and
evaluate the effectiveness of an automatic real-time lo-
cal response in terms of slowing down the global Inter-
net worms propagation. (2) and (3) are general results,
not specific to certain detection algorithm like DSC. We
demonstrate (2) and (3) with both analytical models and
packet-level network simulator experiments.

1. Introduction

In recent years, fast spreading worms have presented
a major threat to the security of the Internet. Worm de-
tection and response received renewed focus in both
academia and industry. In this paper, we mainly focus on
scanning worms which propagate via scanning for pos-
sible victims.

There are three characteristics common to most
worms. First, many worms generate a substantial vol-
ume of identical or similar traffic. This provides the pos-
sibility of detecting known worms using their signatures
(so-called misuse detection). However this approach is
only effective when worm signatures are known, and
fails to detect zero-day and polymorphic worms.

Second, many worms use random scanning to probe
for vulnerable hosts. These scans often reach inac-
tive IP addresses. By observing abnormally quick in-

creases in scans to inactive IP addresses in a moni-
tored network, one may detect the appearance of worms.
Some current approaches [22, 20] use this observation.
These approaches focus on global strategies and require
a large monitored network (say, 220 nodes) to distin-
guish worms from other scan activities, e.g. DDoS (Dis-
tributed Denial of Service) and port scanning. The value
of these “global” worm early warning approaches is
clear; however, local networks find it more useful to
know which machines are infected, and how the attack is
progressing. Worm detection techniques for smaller lo-
cal networks should be further explored.

Random scanning worms also cause high rates of
failed connections. So by observing abnormal failed
connection ratios in a local network, one can detect
worms. Some very recent research [18, 6] exploits this
observation. However, these methods can hardly tell the
difference between a worm and scanners which also
cause high failed connection ratios. Further, detection
based on failed connections will not detect topolog-
ical worms and flash worms that use lists of victim
addresses. We describe the worm detection techniques
above as “symptom”-based algorithms, since they de-
pend on artifacts or “symptoms” of worm infections, i.e.,
based on detecting the scanning activity associated with
scanning worms.

A third factor in most worm infections is obvious, but
often overlooked: vulnerable hosts exhibit infection-like
behavior when infected. That is, the host is first scanned,
then sends out scans destined for the same port. This is
not a novel observation. Some early work in intrusion
detection area [15, 16] advocated the detection of intru-
sion by tracing connection paths, somewhat similar to
the infection relation.

We propose a simple yet powerful two-phase lo-
cal worm detection algorithm, DSC (Destination-Source
Correlation), for local networks. Compared with exist-
ing approaches, DSC is another step in the evolution
of worm detection algorithms. Instead of only focusing
on scanning symptoms, DSC aims to identify the worm
victim behavior, based on both scanning pattern and in-
fection pattern so that it can overcome some disadvan-
tages of existing worm detection techniques. In the first
phase of DSC, we correlate both incoming and outgo-

ing packets to find infection patterns. Then in the second
phase we check for anomalous scanning patterns typi-
cal of worms. Thus, DSC is the first completely behav-
ior-based model to detect worms. Our trace-based anal-
ysis shows that DSC is very effective and has very low
false positive rates.

Our second contribution is to demonstrate the effec-
tiveness of worm early warning using local victim in-
formation. We study how fast we can spot the appear-
ance of new, unknown worms using a general local de-
tection algorithm, compared to traditional “global” de-
tection techniques. We use both an analytical model and
a packet-level network simulation experiments. We ex-
ploit a new simple discrete time-based model adapted
from the AAWP (Analytical Active Worm Propaga-
tion [4]) model to analyze the worm early warning per-
formance using various scanning methods. Our results
show that warnings occur when only 0.19% of all vul-
nerable hosts on Internet are infected, when using a /12
monitored network.

The third contribution of our paper investigates and
evaluates worm response based on local victim infor-
mation. Detecting worm behavior not only lets us is-
sue alerts, but also immediately lets administrators know
which victims were infected, the propagation ports, the
rate of infection, and other critical information that
shapes an accurate response. Using this accurate infor-
mation, we propose a “local response” technique to con-
tain the propagation of worms. Using both an analyt-
ical model and a network simulation experiment, we
study the effectiveness (in terms of slowing down the
global Internet worms propagation) of network level and
host level response to different scanning worms. Our
result shows with only 80% deployment ratio of net-
work level local response, the Internet worms (using ran-
domly scanning method) can be slowed down about five
times than without local response. When combined with
patching, the worm propagation can be slowed down at
first and then stopped completely.

In the following sections we will introduce some re-
lated work and then address our three contributions sep-
arately.

2. Related Work

In studying malware propagation, Kephart et al. [7]
proposed a classic epidemiological model to describe
virus/worm spread. Zou et al. [23] proposed a modi-
fied “two-factor” epidemic model that considered the
situation of human countermeasures and congestion due
to worm traffic. In [4], Chen et al. proposed a dis-
crete time-based propagation model to track the spread
of worms, considering the effects of patching and worm
cleaning during the worm propagation.

Multiple approaches have been proposed for worm
early detection. Staniford et al. [14] first proposed
an idea of establishing a cyber “Center for Disease

Control”. In collecting information of worm activities,
Moore [9] proposed the use of distributed “network
telescopes” using a reasonable large fraction of the IP
space to observe security events occurring on the Inter-
net. Using honeynets to gather and identify attacks was
also proposed and implemented [11, 5]. In [15, 16], re-
searchers proposed the detection of intrusion by tracing
connection paths through the departments of an organi-
zation. This is somewhat similar to our DSC approach.
However, DSC is more simple and practical, dedicated
to worm detection, and combines both infection pattern
and scanning pattern anomaly detection techniques.

In the area of worm early detection/warning, Zou
et al. [22] proposed a Kalman filter-based detection al-
gorithm. This approach detects the trend of illegitimate
scans to a large unused IP space. In [20], Wu et al.
proposed a victim counter-based detection algorithm
that tracks the increased rate of new infected outside
hosts. Recently, Jung [6], Weaver et al. [18] proposed
worm containment based on the observation that scan-
ning worms cause high failed connection ratios. Our pro-
posed detection algorithm is a different approach com-
bining the infection nature of worm and an anomaly
scan detection technique. It effectively detects all kinds
of fast spreading scanning worms, including topologi-
cal worms.

In the area of worm response/defence, Moore [10]
only focused on a more basic question: How effec-
tive can any (“global”) containment approach counter
a worm on the Internet? Zou [24] proposed using a
dynamic quarantine defense on the principle “assume
guilty before proven innocent”. Williamson [19] pro-
posed the idea of rate limiting on the host by limiting
the number of new outgoing connections. Our “local re-
sponse” is a different approach based on local victim in-
formation which combines accurate, early detection and
systematic immediate, automatic, real-time response.

3. Local Victim Detection Using DSC

There are two basic requirements for any worm vic-
tim detection algorithm to detect worms on local net-
works: speed and accuracy. Local network detection sys-
tems should detect victims as early as possible. False
positive rates must also be kept to a minimum.

In this section we will propose DSC (Destination-
Source Correlation) as a candidate local victim detection
algorithm. As noted above, current worm detection ap-
proaches mainly focus on scanning patterns. We believe
the infection behavior is a very important common fea-
ture of worms. Therefore, we designed our worm victim
detection algorithm by first considering the worm infec-
tion pattern.

Worm infections are often different, but in a general
sense, many follow a common pattern. After a vulner-
able host is infected by a worm on a port i (i.e., the
host is the destination of an early worm attack), the in-

2

fected host will send out scans to other hosts targeting
at the same port i in a short time (i.e., the infected host
is a source of new worm attacks). For example, an in-
fected host by Slammer worm on port 1434 also sends
out scans to port 1434 on other hosts. Our detection
model tracks hosts who exhibit this “infection behav-
ior”, and identifies this destination-source infection pat-
tern.

3.1. Basic Idea of DSC Algorithm

The DSC algorithm includes two phases. First, we
find the infection-like pattern. Second, we check the ab-
normal outgoing scan rate for suspicious hosts observed
in first phase. In section 5, we will discuss “local re-
sponse”, which can be considered as the third phase
when we automatically quarantine the victim’s outgo-
ing traffic at the right port.

Assumption: Clearly, DSC does not aim to detect all
types of worms. It is unlikely any one algorithm could
detect all manner of malware. Instead, DSC aims to de-
tect scan-based, fast spreading worms. Further, we pre-
sume that the infection time for hosts is not very long.
In other words, DSC may not effectively detect email
worms, very slow scanning worm, or sleeper worms
with very slow rates of infection. Compared to the fast
spreading worms like SQL slammer and CodeRed, slow
spreading worms do less damage to networks (but not
necessarily hosts), and are easier to contain, in part be-
cause their slower spread rate allows for human inter-
vention.

General idea: We keep a sliding window of local net-
work traffic (destination addresses of SYN and UDP
traffic). Two general items are tracked: for each port wit-
nessed in this traffic, we record the address of the inside
destination host and the scanning source from the moni-
tored network. The addresses can be IP, or MAC address.
If a source scan originates from a host that previously
received a scan on an identical port, i.e., we observe a
worm behavior-like infection pattern, we then treat this
local host as a suspicious victim. In other words, if a host
gets a packet on port i, and then starts sending pack-
ets destined for port i, it becomes suspect. Then if the
immediate outgoing scan rate for the suspect hosts de-
viates from a normal profile, the suspicious victim is
considered to be infected. We then output a worm alert
and indicate the victim IP and its scan rate. By train-
ing for a normal profile of infection-like scan rates, we
can achieve a very low false positive rate in detecting
worm victims. Section 3.3 discusses our anomaly detec-
tion technique. By correlating incoming and outgoing
traffic plus anomaly scan detection, DSC therefore fo-
cuses on worm-like behavior, instead of just the scan-
ning symptoms of worms.

3.2. Bloom Filter-based DSC Algorithm

Detecting infection-like behavior in hosts requires
keeping state. For a large network with heavy traffic
we describe a practical implementation using space-
efficient Bloom filters [3]. Conceptually, a Bloom fil-
ter is a bit vector, initially all zero. As entries are made
to the filter, k independent functions are used to hash
data into indicators, and the corresponding bit is set to
one. To see if data has been entered into a Bloom filter,
on merely performs the k hash operations on the data,
and verifies all corresponding bits are set to one. Thus,
Bloom filters provide a space efficient way to “remem-
ber” data.

For every port, we use Bloom filter to store the des-
tination addresses for scanning traffic (SYN and UDP)
directed at the network. For scanning traffic originating
form the network, we check if the source host appears in
the corresponding filter. If so, we record this infection-
like behavior in a watch list. If the same host repeatedly
sends out more packets and exceeds a trained threshold,
we issue an alert.

Because Bloom filters do not have a mechanism to re-
liably remove old entries, we cannot use a single Bloom
filter as a sliding window. In DSC, we use two Bloom fil-
ters to simulate a sliding window for every port. Every
filter keeps the information for a time periods Tb. (In the-
ory it is one time tick, but to detect worms with a longer
infection time, a bloom filter might record traffic longer
than just one time tick.) Suppose filter1 is in use at time
0 and we begin to insert addresses into it. After Tb/2, we
will insert addresses to both filters. After Tb, filter1 is re-
set to zero and we begin to use filter2. By switching two
Bloom filters periodically, we roughly simulate a slid-
ing window.

When using a Bloom filter, the potential false posi-
tive rate can be calculated as FP ≤ (1−(1− 1

m)kn)k ≈
(1 − e−

kn
m)k. Here m is the size of the filter in bits, n is

the total number of hosts inside the monitored network,
k is the number of hash functions.

3.3. Detection of Abnormal Scan Rate

Merely identifying the basic infection pattern in traf-
fic is not enough to mark hosts as truly infected by a
worm. Indeed, there are some infection-like patterns in
legitimate traffic, such as telnet/ssh chains and P2P con-
nections. To distinguish legitimate from infectious traf-
fic, we further consider the high rate of outgoing scan-
ning that often accompanies worms. Existing scan de-
tection algorithms like TRW [6] can be applied here. In
this paper, we just simply use anomaly detection heuris-
tics to identify this unusual pattern. In practice, we first
establish the normal profile of the outbound scan rate
of services which exhibit infection-like behavior. In idle
networks, or networks that exhibit no fast infection-like
behavior during a training period, one can merely pick

3

an arbitrarily reasonable threshold. For example, if scan
rates of infection-like services are quite low (e.g. less
than 3 /sec), then a higher number of such events (e.g. 6
/sec) are all that is needed to issue an alert.

For networks with various infection-like (but normal)
behavior, the simple detection heuristic discussed above
may not work. We use Chebyshev’s inequality to deter-
mine whether the simple detection heuristic can be used.

For a given random variable, Chebyshev’s inequal-
ity can provide an upper bound on the probability that
the value lies outside a certain distance from the vari-
able’s mean. During the training phase, we approxi-
mate the mean µ and the variance σ2 of the real scan
rate distribution to each port by computing the sample
mean µ and the sample variance σ2 for the scan rate
s1, s2, . . . , sn. The intuition of applying Chebyshev in-
equality is that we can set a threshold t so that we get a
bound on the probability that a value (denoted as x) de-
viates from the mean µ more than the threshold t. In
particular, a Chebyshev inequality can be represented as
p(|x − µ| > t) < σ2

t2 , where p is probability.
Based on the inequality, when σ2 is large, then in or-

der to have a reasonable bound, we need to select a large
t. But this may let the worm detector admit high scan
rate behavior, resulting false negative in worm victim
detection. Thus, we apply our simple detection heuris-
tic only when the values of µ and σ2 are small.

In fact, with real-world data (see our following exper-
iments), most normal infection-like traffic has very low
immediate scan rates, e.g. less than 3 /sec. So we can set
our detection threshold to be a reasonable value, say, 6
/sec.

3.4. DSC in Practice

To test DSC, we used trace files collected from two
distinct sources. Since we know no worm appears in the
traffic traces, the main purpose of the experiments is to
evaluate the false positive rate of DSC.

First, we used data from the Waikato Internet moni-
toring project (WAND) [17] to train DSC. We selected a
65GB (compressed) trace sample, representing a contin-
uous six and one half week trace between February and
April 2001 at the University of Auckland uplink.

We split the data into two chronological parts for
training and testing respectively, in particular, the first
80% of the trace was used as training data and the rest
20% is used for testing the false positive rate. This sim-
ulates the process of learning from the historical data
and applying the learned model to current and future
data. We first established a normal profile of scan rate
for every port immediately after infection-like behavior.
Thus, if a host received traffic on port i, and then gen-
erated traffic to remote port i, we measured the outgo-
ing rate. We focused on traffic from some representative
TCP ports, i.e., 21, 22, 23, 25, 80, 139, 445 and UDP
ports, i.e., 53, 1434.

Surprisingly we did not find any infection-like behav-
iors on all selected ports except port 80. There were
25 infection-like behaviors total on port 80, however,
the immediate outgoing scan rate after infection-like be-
havior to external port 80 proved to be very small, i.e.,
µ = 0.1, σ2 = 0. So we set the detection threshold to
be 2 scans/sec. Testing results showed that the false pos-
itive rate is 0% in this experiment.

Network use of course varies widely. So, we contrast
the WAND results with monitoring traces taken from the
Georgia Institute of Technology, College of Computing
(GTTrace). The GTTrace data came from a 6-day cap-
ture of 2GB busy backbone.

For this second round of experiments, we also de-
voted the first 80% of the data for training and the rest
for testing. Since P2P activities are very normal on cam-
pus networks, in addition to the commonly used ports
(e.g., TCP port 22, 25, etc.), we expanded our analysis
to include TCP ports used by some popular P2P appli-
cations. In particular, we monitored the traffic on TCP
ports 6881 to 6889 used by BitTorrent [2], a P2P pro-
gram.

Port Infection-like behaviors # µ σ2

22 19 0.1263 0.0020
23 8 0.3625 0.0512
80 451 0.7978 1.8120

6884 8 1.9375 1.0455

Table 1. GTTrace Analysis

Table 1 shows the observations and results of normal
infection-like behaviors on some selected ports. From
the Table 1, we can see that the number of infection-
like behaviors is in fact very small in our normal live
network. The corresponding average outbound scanning
rate is also well below that of worms, e.g., CodeRed or
Blaster. We set the detection threshold to be 2 scans/sec
for port 22, 23 and 6 scans/sec for port 80, 6884. As ex-
pected, the detection system did not output worm alerts
in the testing phase either.

In [12] DSC algorithm was applied to data collected
from honeynets during the breakout of SQL Slammer
worm. Results showed that the DSC algorithm can de-
tect the Slammer worm at an early stage without false
alarms. Further, the algorithm also determined all of
three victims’ IP information immediately after they are
infected.

3.5. Limitations of DSC

Besides our assumptions (discussed above), there are
some limitations to DSC. Some normal applications
can produce infection-like traffic and may not have an
immediate stable scan rate. For example, hosts run-

4

ning gnutella may receive TCP/6346 traffic, and also
send data to other clients through TCP/6346 elsewhere.
Moreover, these connections come and go in bursts,
based on human interactions. Another instance may be
a busy smtp relay server. In another word, these appli-
cations demonstrate a normal high µ, σ2. From Cheby-
shev’s inequality we can see that the simple detection
heuristic cannot be used. In such a case, normal traf-
fic blacklisting might help, but this may provide worms
with an unwatched vector for transmission. In future
work, we will study some other anomaly detection al-
gorithms besides considering the rate of outgoing con-
nections.

DSC has another limitation when it comes to bipar-
tite, or dual worms. That is, worms that use two (or
more) attack vectors can evade correlation. Let’s assume
a worm exploits two vulnerabilities, A and B. Attackers
can code the worm so that it alternates what attack it uses
after each infection. Thus, after spreading first by using
attack A, it next spreads using B, and vice versa. This
concern is not merely theoretical. Some malware such
as Phatbot uses at least 8 different attack vectors. Multi-
vector worms present a challenge for DSC.

We designed DSC to be effective for the common
case of fast spreading worms, and not a perfect algo-
rithm for all cases. Our intent was to illustrate the value
of using local detection strategies. Although DSC has
these limitations, we believe it offers a promising ap-
proach to detect local victims in real-time. DSC cer-
tainly is not the only approach. It does, however, suit our
goal: identify a feasible local detection strategy that of-
fers speed and accuracy.

4. Worm Early Warning Using Local Vic-
tim Information

In this section, we consider the effectiveness of lo-
cal detection systems. We presume that an administra-
tor has selected a local victim detection algorithm, one
with a high detection rate and low false alarm. (It may be
DSC, or some other algorithm.) We study the following
problems: Is the local detection system suitable for fast
early warnings? What is the effectiveness of worm early
warning using local victim information? We use analyt-
ical models and network simulation experiments to an-
swer these questions.

In this paper, we will use a discrete time-based An-
alytical Active Worm Propagation-like model (AAWP)
as our analytical model. (For an overview of AAWP,
see [4]) We differ from the traditional AAWP model
on two points. First, previous AAWP models and oth-
ers based on epidemic model, e.g. [23], assume vulner-
able hosts are uniformly distributed in the whole IPv4
space. But in fact, not every IPv4 address is allocated.
The real vulnerable hosts may be uniformly distributed
in those allocated IP space, instead of within the whole
IPv4 space. The size of allocated IP space is about 109

[21, 20]. We denote this allocated IP space as T . Sec-
ond, we focus on local victims information instead of
the global view. If the local network we monitor is the
whole real assigned space, then this becomes the global
victim information.

4.1. Uniform Scan

Uniform scanning means that a worm randomly se-
lects a host in its scanning space as the scanning target.
There are three types of uniform scans: random scan,
routable scan and divide-conquer scan.

Random scan: This is a common scan strategy used
by many worms, e.g., Code Red, Slammer. Because we
assume the vulnerable hosts are uniformly distributed
in the real assigned IPv4 space, we only focus on these
T = 109 space (all victims are located in this space). Ω
is the whole IPv4 space (Ω = 232), N is the total num-
ber of vulnerable hosts on Internet, s is the scan rate (per
time tick), ni is the number of infected hosts at time tick
i. The scans entering space T at time tick i + 1 should
be ki+1 = sni

T
Ω . Within this space T , the chance of one

host being hit is 1 − (1 − 1
T)ki+1 . Then we have new

worm propagation equation Eq. (1).

ni+1 = ni + [N − ni]
(

1 − (1 − 1
T

)sni
T
Ω

)
(1)

If we monitor a network with size D, then the num-
ber of local victims at time tick i is just vi = D

T ni be-
cause we assume that victims are uniformly distributed
in the assigned IPv4 space T .

Because of space limitations, we omit an analysis of
routable scans and divide-conquer scans. Their propa-
gation formulas are very similar to that of random scan.
For more detail, please refer to [12]. Figure 1(a) shows
these three worm propagations. In the paper we will fix
N=500,000 and Hitlist (initial number of worm)=1.

0 2000 4000 6000 8000
0

1

2

3

4

5
x 10

5

Time Tick

N
um

be
r

of
 V

ic
tim

s

Random Scan: 3.0557%
Routable Scan: 3.0754%
Divide−Conquer: 3.0189%

(a) Three Uniform Scans

0 2000 4000 6000 8000
0

1

2

3

4

5
x 10

5

Time Tick

N
um

be
r

of
 V

ic
tim

s

p0=p1=p2=p3=0.25
p0=1,p1=p2=p3=0 (uniform scan)
p0=0.25 p1=0.25 p2=0.5 p3=0
p0=0.5 p1=0.2 p2=0.2 p3=0.1

(b) Local Preference Scan and
Sequential Scan are faster than
uniform scan

Figure 1. Uniform and Local Preference
Scan (scan rate=20/time tick)

5

4.2. Local Preference Scan

Some worms (e.g. Code Red II, Nimda) have scan-
ning policies with a local subnet preference. Without
loss of generality, a local preference scan policy can be
summarized as the following: with p0 probability, se-
lect a totally random address; with p1 probability se-
lect a random address with the same first octet (same
class A address); with p2 probability select a random
address with the same first two octets (same class B ad-
dress); with p3 probability select a random address with
the same first three octets (same class C address). Here
p0 +p1 +p2 +p3 = 1. For Code Red II, p0 = 1/8, p1 =
1/2, p2 = 3/8, p3 = 0. For Nimda, p0 = 1/4, p1 =
1/4, p2 = 1/2, p3 = 0. If p0 = 1, p1 = p2 = p3 = 0,
this becomes a uniform scan worm discussed above.

To analyze the local preferences of a local scan-
ning worm, we divide all the assigned IPv4 space into
b = T/28 small pieces so every piece is a /24 sub-
net. We then divide all these b subnets into four different
types. First, we have a special subnet (denoted by Subnet
type 1) which has a histlist of h1. In this context, ”spe-
cial” means this subnet has a big histlist (most or all of
the first worms are here). Second, we identify (28 − 1)
subnets having the same first two octets as the first sub-
net, but exclusing Subnet type 1. We denoted this subnet
as Subnet type 2, with a hitlist of h2. Third, we iden-
tify (216 − 28) subnets having the same first octet as the
first subnet, excluding both Subnet type 1 and 2. We de-
note this subnet as Subnet type 3, with a hitlist of h3. Fi-
nally, we identify (b−216) subnets having different first
octet as the first subnet, denoted by Subnet type 4, with
a hitlist of h4.

Within a time tick, by summing the average number
of scans coming from a local subnet and other different
types of subnets, the average number of scans in these
four kinds of networks is:

k1 = p3sV1 + p2sg1/28 + p1sg2/216 + p0sg3/b
k2 = p3sV2 + p2sg1/28 + p1sg2/216 + p0sg3/b
k3 = p3sV3 + p2sv3 + p1sg2/216 + p0sg3/b
k4 = p3sV4 + p2sv4b/224 + p1sv4b/224 + p0sg3/b

(2)

where g1 = V1 + (28 − 1)V2, g2 = V1 + (28 − 1)V2 +
(216 − 28)V3, g3 = V1 + (28 − 1)V2 + (216 − 28)V3 +
(b − 216)V4.

Here Vi is the victim number of subnet type i, and its
initial value is hi. ki is the scan number in subnet type i.

In every subnet, the number of vulnerable machines
is 28(N/T), and T is the real assigned IP space. So the
local victims at time tick i + 1 can be calculated as

vi+1 = vi + (28N/T − vi)[1 − (1 − 1/28)ki]

For a randomly selected /24 network, the average
number of victims can be calculated as V1/b + V2(28 −
1)/b + V3(216 − 28)/b + V4(b − 216)/b. Suppose we
monitor some random networks and the whole size is a

/x network. Then we have the average number of vic-
tims ve:

ve = 232−x

28 (V1/b + V2(28 − 1)/b
+V3(216 − 28)/b + V4(b − 216)/b)

(3)

When 232−x

28 = b, then it shows all the victims on the
Internet.

Figure 1(b) shows that different local preference poli-
cies will affect the rate of spread. Chen et al.[4] argue
that the spread of local preference scanning is some-
what similar to that of random scanning, in fact a little
“worse”. However, in our analysis (Figure 1(b)) we sur-
prisingly find that in fact it is much faster than a random
scan worm. This is true even when we use the same pa-
rameter scan policy and hitlist discussed in [4]. We be-
lieve the reason is that Chen et al. assume that the real
vulnerable hosts are uniformly distributed in the whole
IPv4 space, but in fact they are not. The vulnerable hosts
are only uniformly distributed in the real assigned IPv4
space. That’s about 1/4 of whole IPv4 space. This as-
sumption artificially lowered the number of vulnerable
hosts in the network. In turn, this caused the worm’s
spreading speed to be slower than reality. Our model,
however, is more accurate and can show the real speed
of a local preference scan worm.

4.3. Sequential Scan

Sequential scanning means after randomly selecting
a starting IP y, a worm will continue to scan y + 1 (or
y − 1), and so on. Blaster is a typical sequential scan
worm. Without loss of generality, the policy of sequen-
tial scan is combined with local preference. This means
worm can have four probabilities to choose the start
point at different kinds of networks. Thus we use the
same p0, p1, p2, p3, k1, k2, k3, k4 discussed above. But
computing the number of victims in time tick i is a lit-
tle different because for sequential scans the chance of
hitting one host in subnet type i is ki/28.

vi+1 = vi + (28N/T − vi)ki/28

From this equation we can see that the propagation of
sequential scans is very similar to the local preference
scan.

When randomly monitoring a /x-sized network, the
average number of victims can be computed using the
same Eq.(3).

4.4. Worm Early Warning Performance with
Various Scan Methods: Analytical Results

With the analytical model for various scan techniques
discussed above, we evaluate the performance of early
warning systems that use local victim detection systems
(e.g., DSC discussed above). We evaluate the detection

6

time (Table 2) in terms of infected percentage of the
whole Internet’s vulnerable hosts when at least one in-
fected victim in our monitored network is identified, i.e.,
the time when vi ≥ 1. This is a reasonable assumption,
considering the very low false positive of our DSC algo-
rithm. And we will also discuss the situation when only
one victim reported by some victim detection algorithm
is not sufficient to issue an alert.

Scan Type DT (/12 Vs /16) IP(/12 Vs /16)
Random 2953/4157 0.1913%/3.0557%
Routable 691/973 0.1914%/3.0754%

Divide-Conquer 691/1711 0.1918%/3.0530%
Local Preference 1071/1711 0.1913%/3.0610%

Sequential 1073/1715 0.1908%/3.0582%

Table 2. Analytical Early Warning Time

Table 2 shows detailed information about the worm
detection time and corresponding infection percentage
of different scan methods using /12 and /16 networks re-
spectively. Here DT denotes detection time in time tick,
IP denotes infection percentage. The scan policy in lo-
cal preference and sequential is (p1 = p2 = p3 =
p4 = 1/4). Scan rate=20 per time tick. It is easy to
see that we can effectively detect all the scan meth-
ods discussed above at almost the same early stage, i.e.,
less than 0.19% when using /12 networks, and less than
3.08% infection percentage even using a /16 small lo-
cal network. If we use a larger network (maybe the union
of some small networks), the detection performance will
surely be better.

8 10 12 14 16 18 20
0

10

20

30

40

50

Monitored Network Size (/#)

D
et

ec
tio

n
T

im
e(

In
fe

ct
ed

 P
er

ce
nt

ag
e)

scanrate=20
scanrate=200
scanrate=2000

(a) Effect of different scan
rates: routable scan

0 2 4 6 8 10
0

5

10

15

20

25

30

35

D
et

ec
tio

n
T

im
e

(I
nf

ec
te

d
P

er
ce

nt
ag

e)

Infected Number in Monitored Network

/16 network
/14 network
/12 network

(b) Linear Relationship. Scan
rate=20 scans/time tick

Figure 2. Detection Performance

Figure 2(a) shows the detection performance using
different monitored network sizes. It is very clear that as
the size of the monitored network increases, detection
performance improves. It also shows that using differ-
ent scan rates has almost no effect on the detection time.
Worm detection using local victim information-based al-
gorithms is very stable and not sensitive to both differ-
ent scan methods and different scan rates.

There might be some concern about the validity of
an alert issued when there is only one victim detected.
Although a local detection algorithm such as DSC dis-
cussed above has a very low false positive rate (nearly
zero after training), in some cases it is better to find
several detected victims before issuing a warning. We
studied the relationship between the number of infected
hosts in the monitored network and the detection time
as shown in Figure 2(b). The relationship turns out to be
linear. Using a /12 network, with 2 victims the warning
can be issued when only 0.38% of all vulnerable hosts
on Internet are infected. Without loss of generality we
suppose the Bayesian detection rate (that an alarm re-
ally indicate a worm [1]) of the local victim detection
algorithm is Pb, then after c worm alarms are issued, the
probability that this is a real worm is 1−(1−Pb)c. Given
the total Bayesian detection rate we wish to achieve, we
can easily compute the number of alarms we need.

It should be noted that there is an inherent (unavoid-
able) risk of false alarms with any statistical based early
warning strategy. A comprehensive worm detection and
response framework needs to include dynamic feedback
control mechanisms to (continuously) select the opti-
mal response based on the current status of worm in-
fection. This is a future work, and is orthogonal to any
worm early warning work, including ours. On the whole,
compared with other detection algorithms, our candi-
date algorithm, i.e. DSC, improves the quality of the
data stream used for worm early warning, since random
worm-like behavior is more suspicious than random net-
work scans.

4.5. Network Simulator Experiments

To test the local warning system, we use a worm
model developed in the packet level network simula-
tor GTNetS (Georgia Tech Network Simulator) [13].
Because this is a real packet level simulator (which
includes network router congestion, TCP latency, and
other stochastic events) every run takes time. A small
network (/16) was simulated with a realistic packet level
worm model instead of using a partial analytical model
for the whole Internet such as that used in SSFNET [8].

Our motivation for using packet level network sim-
ulation is to validate our local warning system and the
results of our analytical models in an Internet-like set-
ting. We used a hybrid network topology with cluster-
ring backbone and hierarchical sub-networks. The ad-
dress space was populated with uniformly random hosts.
Then, the vulnerable hosts were selected from the pop-
ulation in a uniform random way, Ω = 216, T =
Ω3/4, N = 32000,Hitlist = 1. Since the simulated
network is small compared to the whole Internet, we set
the time required to detect a worm as negligible. Thus,
whenever a host in a monitored space became infected,
it was detected and the number of infected hosts in the
entire network was recorded.

7

We use three different monitored network sizes to see
how fast we could detect random scan worms. We ran
our experiment 15 times for each monitored network
size and computed the average and variance. The result
is shown in Table 3 (early warning time based on local
victim information).

Monitor Space 29 28 27

Avg Scan Rate 5.44 5.50 5.31
Avg Detection Time 0.64% 0.71% 2.39%

Variance 0.362 0.484 7.922
Analytical Detection Time 0.68% 0.71% 2.29%

Table 3. Network Simulator Experiments

We can clearly see that using a smaller network, the
detection time will be longer and the variance will be
larger. Further, the detection time of the network simu-
lation experiments matched the output of our analytical
model when given identical input parameters.

5. Local Response

5.1. Analytical Model for Local Response

With the victim information provided by a local vic-
tim detection algorithm (e.g., DSC), we can automati-
cally take immediate and accurate responses that block
victims so as to effectively stop the outgoing propaga-
tion. The policy decision to block local victims can be
accomplished entirely within the local network in real-
time. This contrasts with global response strategies, i.e.
Internet Quarantine [10], which require complex and
time consuming coordination between CDC-like author-
ity and Internet routers. Our local response is kind of
a passive quarantine, which only throttles local victims
and prevents further outgoing spreading. This is some-
what similar to Williamson’s idea [19] which limits the
rate on the host by limiting the number of new outgo-
ing connections.

Local response can be more effective, since local ad-
ministrators know details about the victim machines and
take more accurate action to block (not rate limit) the
outgoing connections of victims (not all hosts) at that
port (not all ports). This local response policy can be
deployed on every host as [19]. We call this approach
“host level local response”. But it is probably more ef-
fective to only deploy on the edge router of LAN (net-
work level local response) so that every LAN only need
one position to deploy such a quarantine policy.

Suppose there are b1 Class A networks, b2 Class B
networks, b3 Class C networks using network level lo-
cal response policies (based on local victim information
provided by some worm victim detection algorithm like
DSC). Then the size of the network using local response

is D = b1224 + b2216 + b328. Let qi+1 denote the out-
going scans blocked by edge routers of these networks.
For a random scan worm, we have

v′ =
224

T
ni; v′′ =

216

T
ni; v′′′ =

28

T
ni

qi+1 = s · [b1v
′(1 − 224/Ω) + b2v

′′(1 − 216/Ω)
+b3v

′′′(1 − 28/Ω)]

ni+1 = ni + (N − ni)(1 − (1 − 1/T)(sni−qi+1)
T
Ω)

We can imagine that using different values for
b1, b2, b3, the quarantine effect will be somewhat differ-
ent. It also seems that given the same size of D, using
smaller networks (e.g. more Class C network instead of
more Class A network), the quarantine performance will
somewhat improve. The heuristic is that in smaller net-
works, there’s little chance for scans to be directed in-
side, i.e., a larger percentage of scans are outside and
will be quarantined.

However, we find that this is not the case for random
scan worms. From Figure 3(a) we can see that given the
same size of D, whatever b1, b2, b3 are, the quarantine
performance is almost the same. This is because for a
random scan worm, whatever kind of class network it
is (A, B or C), the probability of producing inside scans
and also hitting inside vulnerable hosts is almost negligi-
ble. Based on this observation, we can simplify the for-
mula for local response using α = D/T as the only pa-
rameter to denote the deploy rate of a local response. We
call α the quarantine rate, so that in every time tick, on
average there will be α percent of scans blocked by lo-
cal response. Now we have

ni+1 = ni + (N − ni)(1 − (1 − 1/T)sni
T
Ω (1−α))

The quarantine effect of host level response to ran-
dom scan worm is almost the same as network level re-
sponse (and they can use the same formula). Figure 3(b)
shows the effect of our local response (whatever network
level or host level). With only 80% deployment ratio of
network level local response, the Internet worms (using
randomly scanning method) can be slowed down about
five times than without local response. Using a higher
deploy rate (quarantine rate) α, containment improves.
When α ≥ 90%, or when almost all networks deploy a
local response policy, the worm is nearly stopped from
the beginning!

Now consider a local preference scan worm. Because
using network level local response does not affect the
internal scans, we have the similar formula as Eq.(2)
except that k1 = p3sv1 + (1 − α)(p2s...), and so do
k2, k3, k4.

We imagine that for local preference scan worms, the
effect of network level local response is worse than for
uniform scanning worms. This is because network level
local response can only prevent victims from infecting

8

0 0.5 1 1.5 2 2.5

x 10
4

0

1

2

3

4

5
x 10

5

Time Tick

In
fe

ct
ed

 N
um

be
r

b1=40
b2=40*28
b3=40*216
b1=10,b2=15*28,b3=15*216

(a) Effect of differ-
ent b1,b2,b3 given same size
D = 10 ∗ 224

0 1 2 3 4

x 10
4

0

1

2

3

4

5
x 10

5

Time Tick

In
fe

ct
ed

 N
um

be
r

Without Response
alpha=70%
alpha=80%
alpha=90%
alpha=99%

(b) Effect of local response
to random scan worm

0 1 2 3 4

x 10
4

0

1

2

3

4

5
x 10

5

Time Tick

In
fe

ct
ed

 N
um

be
r No response

Net−level Response(alpha=0.8)
Net−level Response(alpha=0.9)
Host−level Response(alpha=0.8)
Host−level Response(alpha=0.9)

(c) Effect of local response to
local preference scan worm
with policy p0 = p1 =
p2 = p3 = 0.25

0 2 4 6 8

x 10
4

0

1

2

3

4

5
x 10

5

Time Tick

In
fe

ct
ed

 N
um

be
r

patch=0,alpha=0
patch=0.00001,alpha=0%
patch=0.00004,alpha=0%
patch=0.00002,alpha=70%
patch=0.00005,alpha=70%
patch=0.00008,alpha=70%
patch=0.0001,alpha=70%

(d) Effect of both quarantine
rate and patching rate. tr =
2953 + 100. 2953 is the de-
tection time using a /12 mon-
itor, and 100 is additional de-
lay.

Figure 3. Effect of Local Response (scan rate=20/time tick)

outside network hosts but cannot prevent worm propa-
gation within local network, which is worse with local
preference scans.

For local preference scan worms, a more effective ap-
proach is to use host-level local response because it can
block more scans than a network-level local response.
For instance, in this case, k1 = (1−α)(p3sv1 + ...) and
so do k2, k3, k4.

Figure 3(c) clearly shows how network-level and
host-level responses slow down the local preference
worm spreading with p0 = p1 = p2 = p3 = 0.25. Com-
pared with network-level response, the performance of
host-level response is better. Host level response can
slow down by nearly 5 times, but network level response
only slows down about 2 times.

In practice, quarantine can only slow down a worm,
and cannot decrease the number of victims. Because
we know detailed information about local victims, we
can easily take more aggressive and focused actions
to immunize infected machines. So in addition to a
quarantine rate we also consider the effect of a de-
layed patching rate p, applied after worm detection and
analysis, with the response time tr, the delay before
people learn about the need to patch. When i > tr,
ni+1 = (1 − p)ni + [((1 − p)i−trN − ni)·

(1 − (1 − 1/T)sni
T
Ω (1−α))]

Figure 3(d) shows the effect of both patching and
quarantine. We can see that if we only use patching, the
worm will first infect most of the vulnerable hosts, and
then slow down. So it is better to use both quarantine
and patching to first slow down the spread and then stop
the propagation.

5.2. Simulation of Local Response

We also use our packet-level worm simulator to
model the effect of both network and host level local re-
sponse in a small network (a /18). We set Ω = 214, T =
3/4Ω, N = 213 in this experiment. The host level re-
sponse method was simulated by making an infected
host stop sending attack packets after a specified count.

For the network level response, the size of the local net-
works was set to be /27 in size. When a host is in-
fected, all worm packets going out of the same /27 net-
work were blocked, and vulnerable hosts inside could
still be infected. The test was done for both uniform ran-
dom and local preference scanning (scan policy: 0.25 in
same /27, 0.25 in same /24, 0.25 in same /21, 0.25 in
same /18). The result is shown in Figure 4.

0 5 10 15 20 25 30
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Simulation Time

In
fe

ct
ed

 h
os

ts

No response
alpha=70%
alpha=80%
alpha=90%

(a) Local Response for Ran-
dom Scan Worm

0 5 10 15 20 25 30
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Simulation Time

In
fe

ct
ed

 h
os

ts

No response
Net−level(alpha=80%)
Net−level(alpha=90%)
Host−level(alpha=80%)
Host−level(alpha=90%)

(b) Local Response for Local
Preference Scan

Figure 4. Network Simulator Experiments

As it can be seen from the Figure 4, the local response
method was able to slow down the spread of the worm.
With large numbers of hosts having a response capabil-
ity, the worm propagation was slower. To compensate
for the randomness of the network and target selection
variation, each run was done several times to create an
average propagation.

Also we can clearly see that the network level re-
sponse is effective for uniform scanning, but not as ef-
fective for local preference scanning as demonstrated in
the analytical model.

6. Conclusion

In the paper, we introduced a systematic approach to
worm detection, early warning and response based on lo-
cal victim information. The advantages of our approach
are the following.

9

First, we give an example of a local victim detec-
tion algorithm DSC (Destination-Source Correlation).
By correlating incoming and outgoing traffic together
with anomaly scanning detection, DSC therefore fo-
cuses on worm-like behavior, instead of just the scan-
ning symptoms of worms. DSC can be used in produc-
tion networks, and is complementary to other existing
worm detection algorithms.

Second, with distributed deployment of local victim
detection sensors, we can detect worms early, even with-
out using a very large monitored network. Additionally,
the alerts include details about the victims, improving
the value of the warning to local administrators. And,
the local victim information approach is not sensitive to
worm scanning techniques and has good performance
for all scan techniques.

Finally, based on local victim information we can use
accurate, real-time, effective and practical local response
to slow down and stop the propagation of worms. We
believe this local response can be better than global re-
sponse which is time-delayed, less effective and some-
what impractical for Internet routers.

We conclude that a sensitive local detection algo-
rithm can be very helpful, both for early warnings, and
for slowing (or stopping) the propagation. DSC is one
promising candidate despite its limitations. We encour-
age others to identify and explore more powerful local
detection algorithms. In the future work, we will im-
prove DSC and incorporate dynamic factors for local re-
sponses.

7. Acknowledgments

We gratefully thank Mr. Cliff C. Zou, Zesheng Chen
and Christian Kreibich for helpful suggestions and dis-
cussions on the research work. This work is supported
in part by NSF grants CCR-0133629 and CCR-0208655
and Army Research Office contract DAAD19-01-1-
0610. The contents of this work are solely the respon-
sibility of the authors and do not necessarily represent
the official views of NSF and the U.S. Army.

References

[1] S. Axelsson. The base-rate fallacy and its implications
for the difficulty of intrusion detection. In Proceedings
of ACM CCS’1999, November 1999.

[2] Bittorrent. http://bitconjurer.org/BitTorrent/.

[3] B. Bloom. Space/time trade-offs in hash coding with al-
lowable errors. Communications of ACM, 13, July 1970.

[4] Z. Chen, L. Gao, and K. Kwiat. Modeling the spread of
active worms. In Proceedings of the IEEE INFOCOM
2003, March 2003.

[5] D. Dagon, X. Qin, G. Gu, W. Lee, J. Grizzard, J. Levine,
and H. Owen. Honeystat: Localworm detection using
honeypots. In Proceedings of RAID’2004, September
2004.

[6] J. Jung, S. E. Schechter, and A. W. Berger. Fast de-
tection of scanning worm infections. In Proceedings of
RAID’2004, September 2004.

[7] J. Kephart, D. Chess, and S. White. Computers and epi-
demiology. 1993.

[8] M. Liljenstam, D. Nicol, V. Berk, and R. Gray. Sim-
ulating realistic network worm traffic for worm warn-
ing system design and testing. In Proceedings of ACM
WORM’2003, Oct 2003.

[9] D. Moore. Network telescopes.
http://www.caida.org/outreach/presentations/2002/usenix sec/,
2002.

[10] D. Moore, C. Shannon, G. M. Voelker, and S. Savage.
Internet quarantine: Requirements for containing self-
propagating code. In Proceedings of the IEEE INFO-
COM 2003, March 2003.

[11] N. Provos. A virtual honeypot framework. In Proceed-
ings of 13th USENIX Security Symposium(Security’04),
August 2004.

[12] X. Qin, D. Dagon, G. Gu, W. Lee, M. Warfield, and P. Al-
lor. Worm detection using local networks. Technical re-
port, College of Computing, Georgia Tech, Feb 2004.

[13] G. F. Riley, M. I. Sharif, and W. Lee. Simulating internet
worms. In Proceedings of IEEE/ACM MASCOTS’2004,
October 2004.

[14] S. Staniford, V. Parxon, and N.Weaver. How to Own the
Internet in Your Spare Time. In Proceedings of 2002
Usenix Security Symposimum, 2002.

[15] S. Staniford-Chen, S. Cheung, and etc. GrIDS–a graph-
based intrusion detection system for large networks. In
Proceedings of the 19th National Information Systems
Security Conference (NISSC’96), October 1996.

[16] T. Toth and C. Kruegel. Connection-history based
anomaly detection. In Proceedings of the 3rd IEEE In-
formation Assurance Workshop (IASW’02), June 2002.

[17] Waikato internet traffic storage.
http://wad.cs.waikato.ac.nz/wand/wits/index.html.

[18] N. Weaver, S. Staniford, and V. Paxson. Very fast
containment of scanning worms. In Proceedings of
13 USENIX Security Symposium (Security’04), October
2004.

[19] M. M. Williamson. Throttling viruses: Restricting prop-
agation to defeat malicious mobile code. Technical Re-
port HPL-2002-172, HP Laboratories Bristol, June 2002.

[20] J. Wu, S. Vangala, L. Gao, and K. Kwiat. An efficient ar-
chitecture and algorithm for detecting worms with var-
ious scan techniques. In Proceedings of NDSS’2004,
February 2004.

[21] C. Zou, D. Towsley, W. Gong, and S. Cai. Routing worm:
A fast, slective attack worm based on ip address infor-
mation. Technical Report TR-03-CSE-06, Umass ECE
Dept., Novemeber 2004.

[22] C. C. Zou, L. Gao, W. Gong, and D. Towsley. Monitor-
ing and early warning for internet worms. In Proceed-
ings of ACM CCS’2003, October 2003.

[23] C. C. Zou, W. Gong, and D. Towsley. Code red worm
propagation modeling and analysis. In Proceedings of
ACM CCS’2002, October 2002.

[24] C. C. Zou, W. Gong, and D. Towsley. Worm propaga-
tion modeling and analysis under dynamic quarantine de-
fence. In Proceedings of ACM WORM’2003, October
2003.

10

