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Abstract. IDS research still needs to strengthen mathematical foundations and
theoretic guidelines. In this paper, we build a formal framework, based on
information theory, for analyzing and quantifying the effectiveness of an IDS.
We firstly present a formal IDS model, then analyze it following an information-
theoretic approach. Thus, we propose a set of information-theoretic metrics
that can quantitatively measure the effectiveness of an IDS in terms of feature
representation capability, classification information loss, and overall intrusion
detection capability. We establish a link to relate these metrics, and prove a
fundamental upper bound on the intrusion detection capability of an IDS. Our
framework is apractical theory which is data trace driven and evaluation oriented
in this area. In addition to grounding IDS research on a mathematical theory for
formal study, this framework provides practical guidelines for IDS fine-tuning,
evaluation and design, that is, the provided set of metrics greatly facilitates a
static/dynamic fine-tuning of an IDS to achieve optimal operation and a fine-
grained means to evaluate IDS performance and improve IDS design. We conduct
experiments to demonstrate the utility of our framework in practice.

1 Introduction

As an essential component of the defense-in-depth strategy, intrusion detection systems
(IDSs) have achieved more and more attention in both academic and industry. A number
of IDSs have been developed in the last two decades [8]. Research work in the IDS field
mainly focuses on how to construct a new detector based on some new idea so that the
IDS can detect certain attacks with reasonable accuracy (in terms of false positives and
false negatives). These are important topics, of course. However, very little work has
been conducted on the fundamental theory. As a result, unlike cryptography, which
now has a solid mathematical ground based on probability theory and the random
oracle model, the IDS community still lacks a mathematical foundation that can be
used to reason about the effectiveness of an IDS formally and practically. It is definitely
necessary to base IDS research on a solid mathematical background [19] that can
lead to a better understanding, evaluation, and design of an IDS. Such a theoretic
framework should be mathematically sound, and useful in analyzing and quantifying
the effectiveness of an IDS in both theory and practice.

In this paper, we investigate a novel theoretic framework for IDS research based
on information theory. The basic observation is that, the intrusion detection process is
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actually a series of data processing and transformation procedures. This motivates us to
use information theory, which is successfully applied in the area of communication
(which is also a data/signal processing and transformation process), to study the
efficiency of the intrusion detection process. We significantly extend our previous
work on an information-theoretic measure of the intrusion detection capability [10],
which only treats the IDS as a black box and measures the overall performance. In
this paper, we further look into the basic components and architecture of an IDS,
and apply information-theoretic analysis on the detailed intrusion detection procedure.
Specifically, we make the following contributions in this paper:

1. We presenta formal model of an IDS in Section 2 using an eight-tuple
representation containing four data structures and four algorithms, which are used in
three procedures, i.e., feature selection, profiling, and detection. This IDS model unifies
signature-based and anomaly-based IDSs, thus, we can reason about all these IDSs
using the same analytical approach. We also show how existing realistic IDSs such as
PAYL [31] and Snort [26] fit into our model.

2. We performa fine-grained information-theoretic analysis on the IDS model
in Section 4. The detection procedure can be considered as a Markov transition chain
in which two algorithms, i.e., a data reduction and representation algorithmR and
a classification algorithmC, are sequentially applied. This establishes a connection
between intrusion detection and information theory. Further, we presenta series of
information-theoretic metrics that can quantitatively measure the effectiveness
of an IDS and its components. We define the measures of feature representation
capability (CR), classification information loss (LC), as well as the overall intrusion
detection capability (CID, [10]). We establish a link among these metrics, and prove
a fundamental upper bound ofCID. The task of the IDS is to faithfully reflect the
ground truth about intrusion information in observed data. If we assume the original
ground truth information is1 (normalized), when the data reduction and representation
algorithmR is applied, this information is reduced toCR. After the classification
algorithmC is performed, there is furtherLC amount of information loss. The end result
is CID, the overall capability of the IDS. We also discuss how the metrics can be used
in a robust way to tolerate uncertainties and possible estimation errors of parameters in
practice.

3. This framework providespractical guidelines for fine-tuning, evaluation and
design of IDSs. With the help ofCID, one can select the optimal operating point (where
CID is maximized) for an IDS, and we provide a concrete example for dynamically
fine-tuning PAYL [31]. With the whole set of metrics, we provide a fine-grained
analysis and quantification on the effectiveness of an IDS and its components. This
yields a guideline for IDS design improvement, in particular, whether and how the
feature representation or classification algorithm is (the bottleneck) to be improved.
Experiments are conducted to show the utility of our framework in Section 5.

Note that in this paper we are not dealing with other important IDS performance
issues, such as resilience to stress [25] and ability to resist attacks directed at the
IDS [24, 23]. These are different research topics beyond the scope of this paper. Also
we are not trying to address cost related issues in IDS analysis because cost factor is
subjective, but we are building an objective theoretic framework. Finally, we need to
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point out that although our technique/framework may be applicable to other domains
(e.g., to analyze a general classifier), we focus on the intrusion detection (specifically
network-based intrusion detection) field.

2 Modeling an Intrusion Detection System

In order to formally reason and analyze an IDS, we firstly present a formal model of
the IDS. Briefly, an IDS is represented as an eight-tuple(D, Σ,F,K,S,R,P, C), in
which the first four items are data structures, and the last four are algorithms. Note that
whenever we analyze and evaluate any IDS, we cannot talk about it without dealing
with its data source. After all, our IDS model and framework aredata trace drivenand
evaluation oriented.
D: the data source that an IDS will examine and analyze. Essentially this is a stream

of consecutive data units. Since each IDS has its own unit of analysis, e.g., packet
level or flow level for a network-based IDS (NIDS), without loss of generality, we
defineD = (D1, D2, ...) whereDi is an analysis unit of data for the target IDS and
Di ∈ {d1, d2, ...}, dj is the possible data unit. For example, an NIDS uses network
traffic (packet stream), so the data source is a packet streamP = (P1, P2, ...). For a
host-based IDS (HIDS) using system call sequence, the data source is a system call
streamC = (C1, C2, ...). In this paper, we mainly take network data as our example,
and packet as our data unit.

Σ: a finite set of data states indicating whether the data unitDi is normal or
anomalous (or further what type of intrusion). For convenience, we define an IDS
oracleOracleIDS which accepts any query with data unitDi, and outputs an indication
whether the unit is normal or anomalous. The IDS oracle knows the ground truth so it
will always tell the truth3. Then for every data unitDi, its state isOracleIDS(Di). The
space of this state set is finite. For anomaly detection,Σ = {Normal,Anomalous}, or
simplyΣ = {N, A}, or Σ = {0, 1} where 0 denotes normal and 1 denotes anomalous.
For misuse detection, we can letΣ = {Normal, AttackType1, AttackType2, ...}, or
Σ = {N,A1, A2, ...}.
F: a feature vector contains a finite number of features, formallyF =< f1, f2, ..., fn >.

Every feature is a meaningful attribute of a data unit. For example,f1 could be the
protocol type (TCP, UDP, ICMP, etc.),f2 could be the port number. Each feature has its
own meaningful domain (called feature space) which is a set of discrete or continuous
values (either numerical or nominal). The full range ofF is the product of the ranges of
all the features. We denote it asRange(F ) = f1 × f2...× fn.
K: the knowledge base about the profiles of normal/anomalous data. This knowl-

edge base consists of profiling model (stored in some data structures) of normal and/or
attack information. The detailed structure ofK is possibly different for every IDS. It
could be a tree, a Markov model, a Petri net, a rule set, a signature base, etc. For a
signature-based NIDS,K is its rule set which contains only the attack profiling model
(i.e., intrusion signatures). For an anomaly NIDS,K is mainly the profile of the normal
traffic. Any activity that deviates the normal profile is considered as anomaly.

3 In real evaluationof any IDS, since we should always know the ground truth of data, we are
acting as the IDS oracle in these cases.
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S: feature selection algorithm. Given someD and the corresponding statesOracleIDS(D)
(note sometimes only partial or even no such state information available), this algorithm
should return several featuresfi for the IDS to use. Although there is some preliminary
effort to automatically generate worm signature [14, 22] for misuse IDSs as part of
their features, generally speakingS still highly depends on domain knowledge and is
normally conducted manually. The automatic selection or generation of features for
both anomaly and misuse IDSs remains a grand challenge. The quality of features is
one of the most important factors that will affect the effectiveness of an IDS.

(a) Feature selection
procedure

(b) Profiling/training procedure (c) Detection procedure

Fig. 1. Three IDS procedures

R: data reduction and representation algorithm. When processing data, the IDS will
firstly reduce the data and represent it in the feature space. This is a mapping/transition
function, mapping the given data to a proper feature vector representation, namelyR :
D→ F.

P: profiling algorithm, which is the procedure of generating the profiling knowledge
baseK. Given all the feature vector representations of data and their corresponding
states, this algorithm will return the profiling knowledge baseK.

C: classification algorithm. It is a mapping/transition function that maps the feature
vector representation of given data to some states (it will also use the profiling baseK

in classification decision). Formally,C : F→ Σ.
Most IDSs work in three steps.
1. Feature selection procedure (Fig.1(a)). When we are developing an IDS, this

is one of the first steps. Once the proper feature set is defined, it will be used in the
following procedures. Normally, the feature selection procedure is conducted once, only
during development.

2. Profiling procedure (Fig.1(b), sometimes also called training procedure4). We
will run P (also involvingR) on a sufficiently large amount of training data and
get the profiling knowledge baseK. Normally this procedure is performed once,
only during development/training. In some situation, this procedure can be performed
dynamically/periodically to updateK.

3. Detection procedure (Fig.1(c)). In this procedure, the IDS is used to detect
intrusions in the data stream. This is the most important and frequently used procedure.
We will perform an information-theoretic analysis on this procedure in Section 4.

4 Some unsupervised learning based approach may skip this step.
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Our IDS model unifies anomaly detection and misuse detection. In Appendix 9,
we examine two representative IDSs, i.e., PAYL(Payload Anomaly Detection [31]) and
Snort [26], to show how real world IDSs fit into our model.

3 Information Theory Background

Prior to introducing our information-theoretic framework for IDSs, we will first review
a few basic concepts in information theory [6] to assist readers to follow our analysis.

Entropy: The entropy (or self-information)H(X) of a discrete random variableX
is defined asH(X) = −∑

x p(x) log p(x). This definition, also known as Shannon
entropy, measures the uncertainty ofX. A smaller value ofH(X) indicates thatX is
less uncertain (more regular). The definition of entropy can also be easily extended to
the case of jointly distributed random variables.

Conditional entropy:The conditional entropyH(X|Y ) is defined asH(X|Y ) =
−∑

y

∑
x p(x, y) log p(x|y). It is the amount of information uncertainty ofX after

Y is seen. One can show thatH(X|Y )=0 if and only if the value ofX is completely
determined by the value ofY . Conversely,H(X|Y )=H(X) if and only if X andY are
completely independent. The conditional entropyH(X|Y ) has the following property:
0 ≤ H(X|Y ) ≤ H(X).

Mutual information: Assume two random variablesX andY with a joint probabil-
ity mass functionp(x, y) and marginal probability mass functionsp(x) andp(y). The
mutual informationI(X; Y ) is defined asI(X; Y ) =

∑
x

∑
y p(x, y) log p(x,y)

p(x)p(y) . It
is the amount ofreductionof uncertainty inX afterY is known,H(X|Y ) being the
remaininguncertainty. It tells us the amount of information shared between two random
variablesX andY . I(X;Y ) = 0 if and only if X andY are independent. Obviously,
I(X; Y )=I(Y ;X).

There is a nice relationship between entropy, conditional entropy and mutual
information, i.e.,I(X; Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X). That is,I(X; Y )
corresponds to the intersection of the information inX with the information inY .
Clearly,0 ≤ I(X;Y ) ≤ H(X).

4 An Information-Theoretic Framework for Analyzing IDSs

The detection procedure (Fig.1(c)) of an IDS is the most important process for us to
analyze. For simplicity, we will assume an anomaly NIDS withΣ = {N, A} in all the
following analysis (the analysis can be extended to an IDS with more than two states).

We firstly introduce three random variablesXo, Zo, Y . Xo represents all possible
input data units to the IDS. It can take value in{d1, d2, ...} with some probability.
Xo is the data streamD = (D1, D2, ...). Zo (taking value inRange(F ) with
some probability) is the intermediate representation of the data unit using the given
feature set (performingR). Zo is the feature representation stream(Zo

1 , Zo
2 , ...) where

Zo
i = R(Di). Y (taking value inΣ with some probability) is the output alert of the

IDS (the classification result of the IDS).Y is the alert stream(Y1, Y2, ...) where
Yi = C(R(Di)). Note that here we assume there is always an IDS output (decision)
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corresponding to each input. Although a real IDS only needs to output alerts when
there is an intrusion, this does not affect our analysis.

Thus, the detection process is the Markov chain ofXo→Zo→Y (data→representation→alert)
as shown in Fig.2(a), which we refer to as the original model. The input data are
processed in sequence through two algorithms,R andC. The mapping fromXo to
Zo is the result ofR. The mapping fromZo to Y is the result ofC.

(a) Original model (b) Abstract model (c) Clustered model

Fig. 2. Intrusion Detection Procedure: An Information-Theoretic View

The simple observation of this Markov chain data processing procedure motivates
us to use information theory to analyze the process. Intuitively, we can roughly consider
R as an encoding algorithm that uses feature vector to encode the original data unit.
And then,C, as a decoding algorithm, decodes the feature representation to an output
of the IDS. We should point out that althoughR and C resemble encoding and
decoding procedures, they are not exactly the strict encoding and decoding schemes.
In information theory, either encoding or decoding needs an encoding/decoding table
containing all possible codewords for all possible source codes, so it can ensure a perfect
encoding and decoding (without error or ambiguity). In the case of intrusion detection,
we cannot enumerate all the possible input data units (source codes) and feature
representations (code words), nor can we afford to store such a huge encoding/decoding
table. As a result, bothR andC algorithms can only work roughly correct, i.e., these
algorithms may not guarantee errorless information transmission. We can analyze and
quantify the effectiveness of this information transmission using information-theoretic
metrics.

It is still a little hard to practically measure the effectiveness of the intrusion
detection process based on the original model in Fig.2(a), because this model involves
too many states inXo andZo. We can hardly enumerate all the states and practically
measure the transition probabilities. However, we notice that the purpose of an IDS is
not to identify the original input data unit, but to identify thestateof the data unit. That
is, we are interested in only limited states of the data, i.e.,Σ. We can group the input
data to their states. This greatly simplifies the original model and our practical analysis.
Similar idea can also be applied to the feature representation. Thus, we will introduce
two simplified models step by step in the next paragraphs.
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4.1 Abstract Model Analysis

First, we introduce a new random variableX to replaceXo in our analysis.X takes
values inΣ, which represents the state of all possible input data unit to the IDS, with
certain probabilities.X is the state stream(X1, X2, ...) whereXi = OracleIDS(Di).

As the first step of our simplification, we ignore the intermediate feature representa-
tion process (that is, we ignoreZo, and only considerX, Y ). We treat an IDS as a black
box and thus, introduce our first simplified model, i.e., the abstract model in Fig.2(b),
as firstly shown in [10]. In this abstract model,Σ = {N, A}. We can denote transition
probabilities betweenX andY using false positive rate (FP , P (Y = A|X = N),
denoted asα) and false negative rate (FN ,P (Y = N |X = A), denoted asβ). Thus,
we have an abstract model of intrusion detection with a very simple Markov transition
matrix betweenX andY . The capability of an IDS to classify the input events correctly
(i.e., faithfully reflect the “truth” about the input) can be measured using (normalized)
mutual information, which captures the reduction of original uncertainty (intrusion or
normal) given that the IDS alerts are known.

Definition 1. Intrusion detection capabilityCID is defined as the normalized mutual
information betweenX andY [10], i.e., CID = I(X;Y )

H(X) .

We can easily deriveCID = I(X;Y )
H(X) = H(X)−H(X|Y )

H(X) = 1 − H(X|Y )
H(X) . Since

0 ≤ H(X|Y ) ≤ H(X), we get0 ≤ CID ≤ 1.
Intuitively, CID is interpreted as how much (normalized) ground truth information

an IDS can identify. For example,CID = 0.8 means that the IDS identifies 0.8 bit
of ground truth information assuming the original ground truth contains information
1. It indicates how well an IDS can distinguish normal from anomaly and distinguish
anomaly from normal. In other words, it is an objective trade-off betweenFP andFN .

CID has several nice properties [10]: (1) it naturally takes into account all the
important aspects of detection capability (if we expand the equation ofCID), i.e., false
positive rate, false negative rate, positive predictive value (PPV , or Bayes detection
rate [3]), negative predictive value (NPV ), and base rate (the probability of intrusion
P (X = A), denoted asB); (2) it objectively provides anintrinsic measure of intrusion
detection capability; (3)CID yields a series of related information-theoretic metrics,
which will be discussed soon. This gives a fine-grained measure of the basic architecture
and components of an IDS; (4) it is very sensitive to IDS operation parameters such as
α, β, which can demonstrate the effect of the subtle changes of an IDS.

[10] has showed thatCID is more sensitive than some existing metrics (PPV, NPV ),
however, comparison with the probability of errorPe = Pr(Y 6= X) (which is another
metric to define howY is different fromX) is missing. Now we demonstrate thatCID

is also more sensitive to operation parameters thanPe in reasonable situations in which
the base rate is very low [3]. ForΣ = {N,A}, we can derivePe = Bβ + (1 − B)α.
Similarly we can express the formula ofCID usingB, α, β. Since bothPe andCID

have the same scale (value range [0,1]), it is fair to compare their sensitivities. To
compare the sensitivities ofCID andPe, we perform a differential analysis ofB, α, β
to study the effect of changing these parameters onPe andCID. For most IDSs and
their operation environments, base rate and false positive rate are very low [3] so we
can assumeB ¿ 1 andα ¿ 1.
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Fig.3 shows the partial differential analysis (in absolute value) on different metrics.
We only need to care about the absolute value of the derivatives. A larger derivative
value shows more sensitivity to changes. For all the cases in Fig.3(a)(b)(c), a change in
B, α or β results in very tiny change inPe. Only whenα > 0.1, the derivative ofPe on
α begins to be greater than that ofCID. But for real world IDSs, it is very unlikely to
have a false positive higher than 10%. (For example, it is quite reasonable to have more
than one million packets per day in an enterprise network. If a packet level IDS has a
false positive rate of 10%, this will generate more than 100,000 false positives per day!)
Clearly, from Fig.3 we can see thatCID is more sensitive to changes inB, α, β than
Pe (several orders of magnitude more sensitive).
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(α = 0.001, β = 0.01)
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(b) Partial differential onα
(B = 0.00001, β = 0.01)
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Fig. 3. Partial differential analysis (in absolute value). In every situationCID has the highest
sensitivity compared toPe, except in (b) whenα > 0.1 (which is unlikely, in practice every IDS
should have a much smaller false positive rate than 10%). For realistic situations, its derivative is
always higher (several orders of magnitude) thanPe.

4.2 Clustered Model Analysis

In the previous abstract model, we have clustered numerous states inXo into a smaller
set of states inX. As a next step, we reconsider the intermediate feature representation
Zo. Using similar simplification techniques, we will cluster numerous states inZo

into a smaller set. Specifically, we cluster the feature representation vectors to only
three states,{N, U,A}. We can imagine that the IDS Oracle is labeling each feature
representation vectorFi, denoted asL(Fi) ∈ {N,U,A}. StateN means the feature
representation vector is from and only from the data unit which is normal. If the feature
vector is from and only from data unit which is anomaly, then this is labeled asA.
Those feature vectors that can be from both normal and anomalous data have the state
U (meansundistinguishable). Formally,

L(Fi) = N ⇔ ∀Dj ,R(Dj) = Fi, OracleIDS(Dj) = N
L(Fi) = A ⇔ ∀Dj ,R(Dj) = Fi, OracleIDS(Dj) = A
L(Fi) = U ⇔ ∃D1 6= D2,R(D1) = Fi,R(D2) = Fi, OracleIDS(D1) = N, OracleIDS(D2) = A

We use a new random variableZ to replaceZo. Z denotes the clustered feature
representation state, andZ ∈ {N, U,A}. Thus, we can slightly change the original
transition model (Fig.2(a)) to a new one (Fig.2(c)).

In this clustered model, we can perform a fine-grained information-theoretic anal-
ysis on the intrusion detection procedure. Instead of viewing the IDS as a black box in
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the abstract model (Fig.2(b)) , we will analyze and reason about the basic architecture
and components of an IDS. Here we have three random variablesX, Z, Y , which form
a Markov chain in the orderX→Z→Y .

In this detailed model, we first consider the transition fromX to Z. Here we can
define a metric which measures the capability of feature representation. The definition
is also the normalized mutual information, similar to the definition ofCID.

Definition 2. We define the feature representation capabilityCR as the normalized
mutual information betweenX andZ, i.e.,CR = I(X;Z)

H(X) .

ClearlyCR is also a measure of the capability ofR. Similar toCID, 0 ≤ CR ≤ 1.
A largerCR means a better feature representation capability. IfCR = 1, then we

say the IDS has an ideal feature representation capability. Intuitively this is saying that
there is no information loss during the first transition fromX to Z.

If there are some feature vectors with stateU , it is hard to distinguish whether they
are from normal or anomalous data only given the feature vectors (note that forC, the
feature representation vector is the only input). Intuitively, when transition fromX to
Z, we lose the “information”. Information-theoretically, we will have a smallerCR.
Ideally, if the feature set has a perfect feature representation capability, we will have no
feature vector with stateU , which also meansP (Z = U |X = x) = 0 for ∀x ∈ Σ.
In this case, we get the identical distribution ofX andZ, so we getCR = 1. Then the
model is much simplified as well as the abstract model in Fig.2(b).

Now let us consider the transition fromZ to Y . In order to measure how goodC
is, we expect that there will be less information loss after the classification algorithm.
Note here we do not simply use the normalized mutual information betweenZ andY
because actually in this transition, fromZ toY , we still need to involveX, otherwise we
cannot know how goodY is (the classification result) according toX. Let us consider a
new random variableY X which is the joint probability distribution ofX andY . Then
the mutual information difference between(Y X , Z) (i.e.,I(X,Y ; Z)) and(Y,Z) (i.e.,
I(Y, Z)) is the proper measure of classification information loss ofC. We will soon see
this definition also yields another nice property stated in Theorem 1.

Definition 3. We define the classification information lossLC as the normalized infor-
mation loss betweenI(X,Y ;Z) andI(Y ;Z), i.e.,LC = I(X,Y ;Z)−I(Y ;Z)

H(X) .

Because of the chain rule for information process,I(X; Z|Y ) = I(X,Y ; Z) −
I(Y ;Z), we can also writeLC asLC = I(X;Z|Y )

H(X) .

SinceI(X; Z|Y ) = H(X|Y ) −H(X|Y, Z) ≤ H(X|Y ) ≤ H(X), we know that
0 ≤ LC ≤ 1.

We always expect thatC does a good job so as to have less information loss. Thus,
a smallerLC means a better classification algorithm. IfLC = 0, then we say the IDS
has an ideal classification algorithmC (so ideal classification information loss).

Now we have two new metricsCR andLC which can measure the feature rep-
resentation capability and the classification information loss. The following theorem
provides a nice relationship between these two metrics andCID.
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Theorem 1. The intrusion detection capabilityCID is equal to the feature representa-
tion capabilityCR minus the classification information lossLC , i.e.,CID = CR−LC .

Proof. SinceX, Z, Y form a Markov chain in the orderX →Z → Y , the conditional
distribution of Y depends only on Z and is conditionally independent on X. We can get
I(X; Y |Z) = 0 in this case (becauseX andY are conditionally independent givenZ).

Using the chain rule, we can expand mutual information in two different ways.

I(X;Z, Y ) = I(X;Y ) + I(X; Z|Y )
= I(X;Z) + I(X;Y |Z)

Applying the fact thatI(X; Y |Z) = 0, we can getI(X; Y ) = I(X;Z) −
I(X; Z|Y ). Divided byH(X), we getCID = CR − LC . ut

We already knowCID is the fraction of ground truth information identified by the
IDS. If we assume the original ground truth information is 1 (normalized), whenR is
applied, this information will be reduced toCR. After C is performed, we will further
loseLC amount of information due to the classification algorithm. So finally we can
getCID amount of information. If bothCR andLC are ideal, then the IDS has an ideal
intrusion detection capability (CID = 1).

From this theorem, clearly we haveCR ≥ LC becauseCID ≥ 0. Also we can
obtain the following corollary easily.

Corollary 1. For an IDS, the intrusion detection capability is no more than its feature
representation capability,i.e.,CID ≤ CR.

This establishes an upper bound ofCID for an IDS. For any given IDS,CID can
never exceedCR. Once the feature set andR are given, the upper bound ofCID is also
established no matter how goodC is.

4.3 Implication and Discussion

Implication for Fine-Tuning, Fine-Grained Evaluation and Improvement of IDSs
Now we can perform a fine-grained evaluation of IDSs using a set of information-

theoretic metrics,CR, LC , as well asCID. We can compare different IDSs, not only in
terms of the overall performance, but also the performance of their specific components.

The overall measure,CID, is surely very useful. We can fine-tune an IDS to some
configuration that maximizes theCID so that we have an optimal operation point.
Section 5 will show a concrete example to demonstrate the static and dynamic fine-
tuning of an IDS based onCID.

CR can help us evaluate whether the features in use have a good representation
capability or not, independent of the classification algorithm. An ideal feature set should
have no information loss during the process, i.e., there should be no “undistinguishable”
feature representation vector. Once there exist some, they will definitely be classified
to one output category although they are actually from two different input category
(normal and anomaly). Here we lose the information, and the lost information will
never come back or be complemented by further process (classification algorithm).
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If we do find some undistinguishable state (conflicts), we need to further recon-
sider/reselect the features (refineF). For example, we cancarefullyadd more features
so that the existing undistinguishable state will become distinguishable. (The original
distinguishable states are still distinguishable). Thus, we can improveCR and avoid
information loss in the first process (X → Z). Note that only simply adding more
features does not guarantee increasing accuracy (decreasingLC) in the testing data,
which is known as “overfitting” problem in machine learning literature, because the
change of the feature set may also affect the accuracy of the classification algorithm.
As a result, when adding more features, we increase the upper bound ofCID (i.e.,CR),
but we still need to do some possible adjustment/change on classification algorithm to
make sure thatLC does not increase, so that we can improve the finalCID.

In most cases when we compare two different IDSs, they can have different feature
sets and different classification algorithms. With our framework, we can tell their fine-
grained performance difference. For example, the reason why one IDS is less capable
(lower CID) than another one can be mainly because its poor feature representation
capability or classification information loss. Knowing the exact reason will point out
future improvement direction (bottleneck) of IDS design. We have shown this using an
example in experiment 4 of Section 5.

In practical evaluation,CID andCR are easy to measure because the distribution,
transition probabilities fromX to Y in Fig.2(b) and the ones fromX to Z in Fig.2(c)
are easy to obtain in evaluation data. We may not need to directly calculateLC , but
simply apply Theorem 1 to computeLC = CR − CID.

Implication for IDS Design
FeatureF and algorithmR requirement:Feature selection is very important for

any IDS.CR is the first quantitative measure of its representation capability. If features
are not carefully selected, the information will be lost whenR is applied. OnceCR

becomes lower,CID will also decrease no matter how goodLC is.
An IDS will not have a good representation capability if different types of data are

represented in the same feature vector. It will misclassify some events because in the
first transition process(X→Z), these different type of events cannot be distinguished
from each other in terms of the feature vector representation (e.g., for Snort, some
normal packets may match the same rule of some attack; for PAYL, the frequency vector
of byte sequence for some attacks may be within the range of normal profile).

A lower feature representation capabilityCR normally implies two possible reasons,
either features are not well selected orR is not well designed. So we are left with
two possible ways to improveCR. (1) Re-select the feature set or at least carefully
add more features (this implies a better feature selection algorithmS). For example,
a context-aware Bro [27] is better than the one without considering context because it
essentially adds new features (about the context). (2) Well implemented data reduction
and representation algorithmR will also improveCR than poorly designedR. For
instance, in network intrusion detection, when using full assembling, protocol parsing
R, an IDS may achieve betterCR. Traffic normalization [11] is another good example
of a betterR.

Knowledge baseK requirement:Since knowledge baseK is used in the procedure
of C, an accurate (complete and general)K is an important factor to improve the
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performance of classification algorithmC, so as to improveLC . For a signature based
IDS, it is important to make sure the signature set is accurate and covering as many
as possible known attacks. This directly affects the quality ofK, andC. For anomaly
detection, an exact profiling of large amount of normal data is the key to improve the
quality ofK andC.

Realtime requirement on algorithms:The four algorithms in an IDS have different
realtime requirement.S,P are off-line algorithms, so there is fewer runtime speed
requirement. However, for algorithmR andC, they are mostly used online, so they
should be efficiently implemented.

Finally, we should note that most of the implications are not surprising facts. They
can be used as a sanity test for the correctness of any IDS model and theory. Our IDS
model and information-theoretic framework nicely confirm them.

Prior and Transition Probabilities
Static situation:When evaluating IDSs, we should always have the data set with

detailed ground truth knowledge. Thus, from the evaluation data we can easily find out
the base rate (fraction of intrusion) and measure all the transition probabilities (α, β,
etc.) in Fig.2 (b) and (c).

Error bound and confidence:Machine learning researchers have given some
bounds with certain confidence on the estimation of true error based on an observed
error over a sample of data [21]. Given an observed sample errores, with approximately

N% (e.g. 99%) probability, the true erroret will lie in the intervales ± zN

√
es(1−es)

n ,
where n is the number of records in sample data,zN is a constant related to the
confidence intervalN% we want to reach. For example, if we want approximately 99%
confidence intervals thenzN = 2.58. Since the possible difference between testing data
and real data is a general problem for every data-centric evaluation research, we are
not trying to solve this problem in this paper. In practice, we can assume the transition
probabilities are relatively stable (such asα, β) with reasonable high confidence, if the
testing data is a representative sample of the real situation.

Base rate estimation:In the real world, the base rate may vary in different situa-
tions. Here we give a heuristic approach to estimate the base rate. Once we have the
estimated FP (α), FN (β), we can approximately estimate the base rate in real traffic as
follows. All we need is an alert rate (ra) of the IDS (the fraction of generated alerts over
total data). As we know this alert rate can be computed asra = B(1−β)+(1−B)α. So
we can approximately estimated the base rate asB = ra−α

1−β−α , which provides us a good
estimation of the real base rate. It is easy to prove that this is an unbiased estimator for
B. In the next section, we will show how to use this estimation to dynamically fine-tune
an IDS to keep it working on optimal operation points.

Towards a robust consideration:Our framework can also be easily analyzed with
a robust consideration. For a robust evaluation with uncertain parameters in real world,
we consider the realB, α, β can deviate from our estimation to some certain degree
(a range). Thus, we release the assumptions in all above sections. Now instead of
calculatingCID, CR, LC with a static setting ofB,α, β, we use a range of these
parameters (to tolerate largest possible estimation error bound), and among all possible
results, we take the worst values (stands for the worst cases with all possible situation of
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B, α, β as we expect) as the final resulting metric. By doing this, we are actually finding
the best performing IDS against the worst situation (with the worst possible estimation
error bound), instead of finding the best performing IDS on average (this is similar to
the idea in [5]). Thus, we can make sure that this final measure (say,CID) is robust in
sense that it is the low bound in all cases of possible estimated range of parameters. This
will help if one is really concerned about the (large) estimation errors and uncertainties
of the parameters in practice. The IDS is guaranteed to be better than this robust metric
given the largest possible estimation error bound.

5 Experiments

In this section, we describe the experiments we conducted to show how our information-
theoretic framework is useful for fine-tuning an IDS in the real world, and we also show
how a fine-grained measurement of IDSs is helpful for improving IDS design.

5.1 Dynamically Fine-Tuning an IDS

Fine-tuning an IDS is an important and non-trivial task, especially for anomaly-based
IDSs. We can useCID as a yardstick to find an operation point yielding the best trade-
off betweenFP andFN (best is in terms of the intrinsic ability of the IDS to classify
input data). Specifically, we firstly change the threshold of the anomaly IDS so that
we can achieve differentFP andFN pairs, and create an ROC curve. Then, we can
calculate correspondingCID for every point in the ROC. We select the point with
the highestCID, and the threshold corresponding to this point provides the optimal
threshold for use.

To demonstrate this, we select an anomaly IDS, PAYL [31], as our example.
PAYL requires a threshold for determining whether the observed byte frequencies
vary significantly from a trained model. For example, a threshold of 256 allows each
character in an observed payload to vary within one standard deviation of the model.
We collected a HTTP trace at a web server from our campus backbone network. Since
PAYL only handles the HTTP requests from client to the server, we filter out all the
outgoing HTTP responses. The trace data set only consists of incoming HTTP requests,
approximately 7.5 million packets. We also filtered the trace set through to remove
known attacks, and equally split the trace into three sets: training set, testing set 1, and
testing set 2. We injected numerous HTTP attacks into the testing set, using tools such
as Nikto [29].

In our first experiment, we train PAYL on the training set, and test it on testing
set 1. The purpose is to choose an optimal threshold as the static operation point for
PAYL in our testing environment. The base rate in testing set 1 isB = 0.00081699.
The result is shown in Fig.4(a). We see that for the testing trace, as the threshold
drops, CID reaches a peak and then drops, while the ROC curve (shown in the
top graph) continues to slowly increase. The maximum point ofCID corresponds to
<α = 0.0016053, 1−β = 0.9824>, and the corresponding threshold is 480. This tells
us that PAYL works optimal in sense of intrusion detection capability at this threshold
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Fig. 4. Fine-tuning PAYL in static and dynamic situations. In experiment 1,CID can tell the
optimal operation point, while a pure ROC curve cannot. In experiment 2,CIDAuto outperforms
other schemes in terms of achieving optimal operation points dynamically in different base rate
situations.

in our testing data. Without our information-theoretic guidelineCID, it is not clear how
to choose an optimal operation point from the ROC curve.

Experiment 1 finds optimal threshold in testing set 1. If the base rate in testing
set 1 is representative to the real situation, then it is perfect. However, in real world
situation, the base rate may vary from time to time. If we fix the operation point at a
certain threshold, then in other testing data, we may not always achieve optimalCID

when the base rate varies. To address this problem, we introduce a new dynamic fine-
tuning scheme that can be adaptive to any real situation. In previous section, we have
discussed an unbiased estimation of base rate, i.e.,B = ra−α

1−β−α . If we divide the time
series into many intervals, at each intervaln, we estimateBn, and then choose optimal
operation point at this base rate to maximizeCID. By dynamically fine-tuning the IDS,
we ensure the IDS always operates on optimal points. Thus, we get a self-adaptive,
self-tuning version of the IDS, which is very useful in practice.

We conduct a second experiment to investigate the effectiveness of dynamic fine-
tuning. In experiment 2, we use the same training set in experiment 1. For the testing
set, we inject different amount of attacks into testing set 2, and generate two new testing
set2A and2B. They contain the same normal data but different amount of attacks, so
their base rates are different from testing set 1. Specifically,B2A = 0.00077256, which
is only slightly different from testing set 1,B2B = 0.00044488, which is almost half of
that in testing set 1. We modified PAYL to deploy a dynamic fine-tuning usingCID as
the guideline. And we denote this scheme asCIDAuto scheme. We compare the results
to the cases when we fix the threshold at some certain values from 416 to 544. We also
compare with the original automatic threshold adjusting scheme provided by PAYL
(denoted asPaylAuto). This scheme is to adjust the threshold in testing to control the
alarm rate below certain value (0.001 in PAYL’s setting). Once the alarm rate is stable
low for some time, then the threshold is fixed during the rest of the testing.

The results of experiment 2 are shown in Fig.4(b).CIDAuto outperforms all other
schemes in all cases, i.e., it outputs the highestCID in both two testing sets2A and
2B. Fixing threshold at 480 as in experiment 1 still achieves satisfied result but not
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the optimal one because the base rate varies. Fixing threshold at 480 scheme gives the
second highestCID in test2B, less thanCIDAuto. Fixing threshold at 448 achieves
the second highestCID in test2A, still less thanCIDAuto. In both testing sets, the
PaylAuto scheme runs with a final stable threshold at 376, and this scheme has the
highestFP and lowestCID (which is not good).

Our experiments clearly demonstrate the usefulness ofCID in dynamic fine-tuning
of IDSs.

5.2 Fine-Grained Evaluation and Design Improvement of IDSs

In this section, we will show how our framework can be used for a fine-grained
evaluation of IDSs and how we can improve the design. As a motivating example, we
will use several machine learning based IDSs in this experiment, because they have a
clear architecture and we can easily manipulate them as we want to change features or
classification algorithms. Thus, it is much easier for readers to understand the usefulness
of our framework.

In [17], Lee and Stolfo proposed three categories of features to be used by IDSs, i.e.,
9 basic features of individual TCP connections, 13 content features within a connection
suggested by domain knowledge, and 19 traffic features computed using a two-second
time window. Using these total 41 features, they processed data set from 1998 DARPA
Intrusion Detection Evaluation program [18]. The processed data are available known
as KDD cup 1999 data set [1]. Every connection record is labeled as N (normal) or A
(anomalous). The training set has 494,020 connection records. The testing data set has
311,029 records, among which 250,436 are anomalous. Obviously we can see that the
distribution (of normal and anomalous data) in the testing data is not good because the
base rate is so high (about 0.8) and obviously not a reasonable operation environment.
Only for the purpose of providing a reasonable base rate, we artificially duplicate the
normal connections 4000 times, so that the base rateB = 250436/(4000 ∗ 60593 +
250436) ≈ 0.001 is more reasonable. Note that our duplicating normal data does not
affect other parameters such asα, β.

We have noticed the critique [20] on the DARPA data set and the limit of the KDD
data set. However, since our purpose isnot to design a new IDS nor to conduct an official
testing evaluation, we merely take them as a (public available) platform to demonstrate
our framework. In this sense, we think the data are still valid to achieve our goal. We
also plan to conduct more experiments using more real world IDSs on real world data
to demonstrate our framework in the future.

In experiment 3, we use all 41 features (denoted as feature set1). For the classifica-
tion algorithmC, we choose three different machine learning algorithms, i.e., decision
tree (specifically, we use C4.5 [21]), Naive Bayes classifier, and SVM (Support Vector
Machine [30]). All of them have been successfully applied to intrusion detection [2,
13]. Since they are standard machine learning classification algorithms that are well
documented in [21, 30], we skip the details of these algorithms in this paper. The result
of experiment 3 is shown in Table 1.

Form Table 1, we can see that in the transitionX → Z, these 41 feature set
doesnot provide an ideal feature representation capability (i.e.,CR = 0.9644 < 1).
Specifically, we measure the transition probabilitiesP (Z = U |X = N) ≈ 0.12 and
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Table 1.Experiment 3: a fine-grained evaluation

IDS α β CID CR LC

Feature set 1 with C4.5 0.017609 0.0896760.42580.96440.5386
Feature set 1 with Naive Bayes0.025713 0.0998020.37560.96440.5888
Feature set 1 with SVM 0.00364730.12397 0.56420.96440.4002

P (Z = U |X = A) ≈ 0.030319. When further analyzing the stateU in detail, we
surprisingly find that all of theU states are caused bysnmpgetattack (one kind of
R2L attack), i.e., 7,593 (out of total 7,741)snmpgetattack connection records have
the same feature representations with some normal data. In other words, only from these
feature representation, one cannot distinguish thesesnmpgetattack from normal
traffic. So we already have information loss at the data reduction and representation
process. For the classification process, SVM has the lowest classification information
loss (LC = 0.4002, much lower than other two algorithms). Thus, SVM finally outputs
CID = 0.5642, which means on average, SVM can achieve slightly more than half of
the original ground truth ‘information’. The other two algorithms get less than half.

Experiment 3 clearly shows that the feature set in use still has room to improve
because the feature representation capability is not ideal (a simple possible solution to
improveCR is to add one more feature which can distinguish thesesnmpgetattack
from normal traffic, e.g., SNMP protocol or not). We are the first to provide a quan-
titative measure of such capability. We also quantitatively compare the classification
information loss of different machine learning algorithms such as SVM, decision tree
and Naive Bayes. The result shows SVM has the least classification information loss in
the data set.

In practice, more likely we will have IDSs with different feature sets and different
classification algorithms. In these cases, we can first compare them using the overall
intrusion detection capability (CID). Moreover, we can further (fine-grained) compare
their feature representation capability and classification information loss. It will help
us understand why an IDS is better, i.e., mainly due to itsCR or LC . This not only
helps us evaluate IDSs (especially when the IDSs have similar overallCID), but
also indicates the direction for further improvement and tuning of IDS design. To
demonstrate this point, we conduct experiment 4. We choose two different feature sets
and two different classification algorithms to form two IDSs: one uses feature set2
(including 9 basic features and 13 content features) and C4.5 classification algorithm,
the other uses feature set3 (including 9 basic features and 19 traffic features) and Naive
Bayes classifier. For feature set2, we get the transition probabilitiesP (Z = U |X =
N) ≈ 0.2021, P (Z = U |X = A) ≈ 0.1892 in testing set, andCR = 0.8092.
For feature set3, we get the transition probabilitiesP (Z = U |X = N) ≈ 0.12,
P (Z = U |X = A) ≈ 0.030319, andCR = 0.9644.

The experiment result is shown in Table 2. We can see that the two IDSs have
similar CID (IDS1 is slightly better). But by further exploring the components of
these IDSs, we find IDS1 has a much worseCR but a betterLC . On the contrary,
IDS2 has a betterCR but the classification algorithm is very poor (causing larger
classification information loss). This fine-grained analysis indicates the bottleneck and
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Table 2. Experiment 4. The fine-grained analysis indicates the improvement direction for each
IDS.

IDS α β CID CR LC

IDS1(with feature set 2 and C4.5) 0.0236990.0794370.40020.80920.4090
IDS2(with feature set 3 and Naive Bayes) 0.0225770.10329 0.38750.96440.5769

IDS1(after improving feature set) 0.0176090.0896760.42580.96440.5386
IDS2(after improving classification algorithm)0.0175760.0903740.42550.96440.5389

further improvement direction for IDS2 is mainly on classification algorithm, while for
IDS1 is primarily a better feature set (since itsCR is too low compared to that of IDS2).
Following this direction, we do another experiment with indicated improvements. When
IDS1 improves its feature set (classification algorithm unchanged) by simply adding
more traffic features to become feature set1, we can get a betterCID = 0.4258,
which is higher than the original 0.4002. By improving IDS2’s classification algorithm
(use c4.5 to substitute Naive Bayes in our experiment, feature set unchanged), we can
improve theCID from 0.3875 to 0.4255.

The above example clearly demonstrates that fine-grained analysis can indicate our
further (component) improvement direction for the design of IDSs.

6 Related Work

Intrusion detection is a field of active research for more than two decades. However,
there is still little work on fundamental (theoretical) research, and there is still a huge
gap between theory and practice.

For theoretical studies of intrusion detection, in 1987, Denning [9] was the first
to systematically introduce an intrusion detection model, and also proposed several
statistical models to build normal profiles. Later, Helman and Liepins [12] studied
some statistical foundations of audit trail analysis for intrusion detection. Axelsson [4]
pointed out that results from detection and estimation theory may be used in the IDS
research. However, it is unclear how these similarities can benefit IDS evaluation and
design. Songet al.[28] used ACL2 theorem prover for the analysis of IDSs that employ
declarative rules for attack recognition by proving the specifications satisfy the policy
with various assumptions. This approach is only useful for a certain type of IDSs,
i.e., specification-based intrusion detection. In contrast, our framework is general to
all types of IDSs. Recently, Di Crescenzoet al. [7] proposed a theory for IDSs based
on both complexity-theoretic notions and well-known notions in cryptography (such
as computational indistinguishability). Cardenaset al. [5] proposed a framework for
IDS evaluation (not analysis) by viewing it as a multi-criteria optimization problem and
gave two approaches: expected cost, and a new trade-off curve (IDOC) considering both
the detection rate and the Bayes detection rate. Different from these existing work, our
framework is an objective (without taking subject cost factors), natural and fine-grained
approach with information-theoretic grounding. Besides, we established a clear and
detailed IDS model, and provided an entire framework to analyze components inside
an IDS and improve the design of IDSs.
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Information-theoretic metrics have been widely applied in many fields. For instance,
in the machine learning area, there are well-known algorithms (such as C4.5 [21]) that
use information gain as a criterion to select features. [15] proposed to use entropy as
a measure of distributions of packet features (IP addresses and ports) to identify and
classify anomaly network traffic volumes. Leeet al. [16] applied information theoretic
measurement to describe the characteristics of audit data set, suggested the appropriate
anomaly detection model, and explained the performance of the models. This paper is
a significant improvement and extension on our previous work [10], in whichCID was
firstly proposed as a measure of the overall intrusion detection capability by viewing the
whole IDS as a black box. An overall measure of the IDS is useful, but it cannot measure
the performance of each component of the IDS. In this paper, we looked into the detailed
processes within an IDS and performed a white box information-theoretic analysis on
the components of the IDS. Thus, we built a complete framework. In addition, we
demonstrated fine-tuning an IDS in both static and dynamic cases. We also showed how
to use our framework to evaluate IDSs in a fine-grained way and improve the design of
IDSs with experiments.

7 Conclusion and Future Work

In the paper, we established a formal framework for analyzing IDSs based on informa-
tion theory. As apractical theory, it is data trace driven and evaluation oriented. Within
our framework, the analysis of anomaly based and signature based IDSs can be unified.
In addition to providing a better understanding of IDSs grounded on information theory,
the framework also facilitates a static/dynamic fine-tuning of an IDS to achieve optimal
operation, a better or finer-grained means to evaluate IDS performance and improve
IDS design. Our framework provided intrusion detection research a solid mathematic
basis and opened the door for the study of many open problems.

This paper is only a preliminary start in the field. There are many topics for possible
future work. One is to use more information theory, e.g., channel capacity models, to
further study the effect of multiple processes/layers/sensors of the IDS architecture.
Thus, we can analyze and improveboth internal and externaldesigns of the IDSs by
extending our current framework. We will also further study robust ways of applying
the framework.
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9 Appendix: How Real World IDSs Fit into Our Model

Table 3 shows how PAYL and Snort5 fit into our model.

Table 3.Modeling PAYL and Snort

PAYL model
D Packet sequence(P1, P2, ...)
Σ {N, A}, only indicates normal or anomalous.
F A character frequency vector< fre0, fre1, ..., fre255 >, herefrei is the frequency of chari in the payload of the

packet.
K For each specific observed lengthi of each portj, Mij stores the mean and standard deviation of the frequency for each

distinct byte.
S Manually examines exploits and finds out the importance of byte frequency.
R Scans each incoming payload of the packet, computes its byte value distribution.
P RunsR on large normal data set to generate normal profile (K) of the frequency.
C For each new payload distribution given byR, compares against modelMij . If their Mahalanobis distance significantly

deviates from the normal threshold, flags the packet as anomalous and generates an alert.

Snort model
D Packet sequence(P1, P2, ...)
Σ {N, A1, A2, ...}. N is the normal state.Ai is the type of attack that can be detected by Snort, e.g.,

WEB-IIS .asp HTTP header buffer overflow attempt . Currently Snort can detect over three thousand
attacks.

F Feature vector such as <srcIP, dstIP, dstPort , payload containing ’|3A|’ or not ,
payload containing ’|00|’ or not , ...>. Many of the features are boolean values to indicate whether
the payload contains some substring (part of the intrusion signatures) or not.

K The rule set of Snort.
S Manually examines exploits and finds out most common strings in intrusions.
R Grinders the packet, preprocesses (defragmentation, assembling, etc.). If possible, uses string matching to explore feature

space according to the rule set. Due to the implementation of Snort,R does not need to represent the packet into the whole
feature space. Instead,R can stop when the packet is represented to some subset of features (matching a certain rule).

P Manually extracts signatures of intrusions and generates the rule set.
C AlthoughC is not clearly separated fromR in the implementation of Snort, we can consider it as a simple exact matching

in knowledge baseK (as 1-nearest neighbor searching in the rule set for the exact rule).

5 There is no clear separation betweenR andC in the implementation of Snort. But we can still
model the whole process into two algorithms.K is used in the whole process.


