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Abstract

Intrusion Detection Systems (IDSs) are relatively complex devices
that monitor information systems in search for security violations.
Characterizing the service times of network IDSs is a crucial step
in improving their real time performance. We analyzed about 41
million packets organized in five data sets of 10 minutes each col-
lected at the entry point of a large production network and processed
by Snort, a commonly used IDS. The processing times of the three
main stages in Snort were measured. The main conclusions of our
study were: (1) Rule checking accounts for about 75% of the total
processing time in IDSs, with mean payload checking time being
4.5 times larger than mean header checking time. (2) The distri-
bution of rule checking times is markedly bimodal, a direct con-
sequence of the bimodality in packet composition in current high
speed Internet traffic. (3) Header processing times have a small
variance and small correlation coefficients. (4) In contrast, the dis-
tribution of payload processing times displays high variance, in a
form that can be generally characterized as “slightly heavy-tailed”.
Explicitly, payload processing times have a Lognormal upper tail,
clipped at the top 1%. This extreme 1% upper tail is better fit by
an Exponential distribution. (5) Additionally, payload processing
times were shown to be highly correlated, with correlation coeffi-
cients several orders of magnitude higher than the confidence bands
for the standard whiteness test. The impact of these findings in
the design of IDSs for real time operation in networks is discussed,
and compared with existing results for processing times for Unix
processes, which were shown to display pronounced heavy-tailed
characteristics.

1 Introduction

Intrusion Detection Systems (IDSs) are relatively complex
devices that monitor information systems in search for secu-
rity violations - [5], [19]. In network-based IDSs, data pack-
ets enter the IDS and are subjected to a number of processing
steps whose ultimate objective is to determine if the packet
contains an intrusion or not. There are essentially three main
steps in network IDSs, such as Snort — [6]:

e Packet decoding: Decodes the header information at
the different layers and creates a data structure for the
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packet, which is used in the next steps.

e Preprocessing: Performs a number of preparatory steps
in the packet, such as normalization, IP fragment re-
assembly, TCP stream reconstruction, etc.

e Rule checking: Checks if the packet contains a partic-
ular string, or a collection of strings, which are associ-
ated with an intrusion. A rule consists at a minimum
of a type of packet to search (protocol type), a string of
content to match and a location where that string is to
be searched for — [24]. Rule checking in Snort has
two (sub)-steps: Non-Content Matching (NCM), per-
formed in the packets’ headers and Content Matching
(CM), performed in the packets’ payloads.

Like any computing device operating in real time, the op-
erational performance' of an IDS depends on the arrival rates
of packets streaming at its input, and the service rates it pro-
vides to the packets. The two components are equally impor-
tant in characterizing the performance of the IDS, and their
understanding is crucial for the design of more efficient sys-
tems. The arrival rates of packets at network IDSs are the
arrival rates of packets into the networking device in which
it is installed, modulated by traffic shaping, if applicable.
Much is known about the statistical properties of arrival rates
of packets in the Internet, result of extensive research, es-
pecially in the last decade — [7] and references therein. In
contrast, very little is known about the statistical properties
of service times in network IDSs. The focus of the research
on network IDS evaluation has been on measuring the per-
formance metrics as a function of the network load, traffic
characteristics (balance between protocol types, presence of
fragments, etc.) and complexity of the ruleset — eg. [12],
[23]. A recent study - [2] - has measured the processing times
of the various components of Snort, but no statistical char-
acterization was attempted. The objective was to construct
synthetic workloads out of real traffic, for use in IDS bench-
marking. In this paper, we study the statistical properties of

By operational performance we mean the usual metrics of mean service
time, percentage of dropped packets, etc.



the service times in Snort, which we believe is an essen-
tial step in designing more efficient IDSs. Service times for
Unix processes were investigated in [16] and [13] leading to
new strategies for load balancing and processor design. We
expect a similar effect from this current study, in the design
of network IDSs.

2 Statistical Distributions of Process-
ing Times

2.1 Data collection and general characteristics

Five data sets of about 10 minutes corresponding to 5-12
million packets each were collected using the standard tool
tcpdump at the main entry point to the network serving the
College of Computing at the Georgia Institute of Technology.
The packet streams were then inputed into Snort version
2.0.5, with its standard ruleset of 1458 rules. Especially de-
signed instrumentation tools recorded the following variables
for each packet:

e P: Packet size (payload size and header size are
recorded separately).

o T,: Time spent in the grinder (packet decoding).
e T},: Time spent in preprocessing.

e Ty, Time spent in Non-Content Matching (NCM) de-
tection.

e T,,: Time spent in Content Matching (CM) detection.

e Ty: Time spent in detection — NCM and CM?2.
e Protocol type — TCP(http,telnet,- - -), ICMP, UDP.
e Alert status — Alert type, if an alert is issued.

The data sets were collected during week days. Some rel-
evant statistics are presented in Table 1. Sets 1 and 2 were
collected on the same day. To eliminate outliers caused by
measurement errors in data collection, we have repeated the
same experiment twice for data set 1, and compared the re-
sulting data records. Entries that were substantially differ-
ent were deleted, and the same threshold used for deletion in
the other data sets. As an example, in data set 1 we have
recorded 73 packets with Ty, above 1,000 us. However,
the corresponding records for the repeated experiment were
substantially lower, indicating that these measurements were
outliers. Note that p14, pt, and g4 are quite similar for the five
data sets. Moreover, Ty represents about 75% of the overall
processing time of each packet, which agrees with the study
in [2]. Since T4 considerably dominates the overall service
time, we focus our study on its characterization.

2.2 Bimodality and dependence on packet
composition

Figure 1-(a) depicts the histogram of log; (T4 + 1) for data
set 1, which clearly indicates bimodality on the distribu-
tion of T. Figure 1-(b) depicts the histogram of P, which
also displays bimodality. Similar results were verified for

2Clearly, Ty = Tqy +Ta, -

Set Rate Alerts | pg Up d

No. || (Mbps) | (Total) | (us) | (us) | (us)
1 58.6 8257 | 1.70 | 2.81 | 14.7
2 54.8 7446 | 1.64 | 2.74 | 13.6
3 101.1 7294 | 1.68 | 298 | 12.7
4 133.5 | 14167 | 1.70 | 3.32 | 13.1
5 118.8 | 14020 | 1.67 | 3.35 | 13.5

Table 1: Relevant statistics for the collected data sets. pg, tp
and pq respectively denote the means of Ty, T}, and T}.

the other four data sets in reference to bimodality in 7Ty and
P. To investigate the possible relationship between bimodal-
ity in P with bimodality in T}, we plotted a scatter plot of
log,o(T4+1) vs. P in Figure 1-(c). It clearly shows a mono-
tonic relationship, with large packets producing large pro-
cessing times. In quantitative terms, the correlation coeffi-
cient between log; (T4 + 1) and P is 0.766.

Bimodality in P is a well known phenomenon in Inter-
net traffic, as noted for example in [1] in which 127 million
packets at NASA Ames Internet Exchange (AIX) were an-
alyzed. Figure 1-(d) presents the Cumulative Distribution
Function of P for data set 1, which displays great similar-
ity with the same plot for the NASA Ames data set in [1].
it is clear from figure 1-(d) that between 30% to 40% of the
packets have size close to 60 bytes, while the large remain-
ing packets have sizes above 1,200 bytes. As noted in [1]
this phenomenon can be explained by the current nature of
Internet traffic. Approximately 85% of current traffic is TCP,
and a large proportion is generated by bulk transfer applica-
tions such as HTTP or FTP. Consequently, the majority of
the packets seen are one of two sizes: short, typically 60 or
66 byte packets which carry TCP acknowledgements but no
payload and payload carrying packets with a maximum of
1500 byte packets. Given this observation, we define two
types of packets for our study. Header-Only (HO) packets,
containing only TCP/IP headers and no payload, and Header-
and-Payload (HP) packets, containing header and payload.
Clearly, all packets fall in either one of these two classes. Ta-
bles 2 and 3 present relevant statistics for the five data sets,
when split into HO and HP (sub)-sets. Here, set 1HO repre-
sents the HO packets in data set 1, set |HP represents the HP
packets in data set 1, and so on. Below are some comments
regarding the results in tables 2 and 3.

o In general terms, HO packets and HP packets constitute
two very diverse populations. HP packets account for
about 65% of the observed packets.

e Ty for HP packets are typically 5.5 times larger than Ty
for HO packets. This is explained by the fact that HO
packets are not subjected to CM processing.

o T, for HP packets tend to be larger, a result of the packet
size. T, for HO packets are larger, an item whose ex-
planation is under investigation.

e The bulk of the alerts — 60%-80% across the five
datasets — occurs in HP packets, but the alert rate per
packet is roughly 0.15% for both HP and HO packets,
with wide variations across the five data sets.

o The results in table 3 are particularly significant.
14, and o4, vary very little across the five data sets, HO



Set || Packets | Alerts | pg Up bd
No. (Total) | (Total) | (us) | (us) | (us)
1HO || 1.78¢6 | 3355 | 1.48 | 3.66 | 3.27
1HP || 3.29¢6 | 4902 | 1.82 | 2.35 | 19.5
2HO || 1.64e6 | 3416 | 1.38 | 3.55 | 3.25
2HP || 3.67e6 | 4030 | 1.77 | 2.31 | 17.9
3HO || 3.0le6 | 2888 | 1.46 | 3.97 | 3.21
3HP || 5.57¢6 | 4406 | 1.80 | 2.45 | 16.5
4HO || 4.33¢6 | 2607 | 1.46 | 4.82 | 3.21
4HP || 7.48¢6 | 11560 | 1.84 | 2.45 | 17.4
SHO || 3.86e6 | 4109 | 1.45 | 4.64 | 3.26
SHP || 6.81e6 | 9911 | 1.79 | 2.62 | 17.9

Table 2: Relevant statistics for the data sets partitioned into
HO and HP (sub)-sets.

Set Hd,y 0d, Ydy Hdy Ody Ydo

No. || (us) (ps)

1HO || 3.27 | 0.55 | 0.016 — — —

1HP || 3.32 | 0.58 | 0.030 || 16.1 | 29.1 | 0.44
2HO || 3.25 | 0.52 | 0.004 — — —

2HP || 3.27 | 0.55 | 0.026 || 14.6 | 21.3 | 0.45
3HO || 3.21 | 0.48 | 0.003 — — —

3HP || 3.23 | 0.50 | 0.012 || 13.2 | 15.2 | 0.22
4HO || 3.21 | 0.51 | 0.008 — — —

4HP || 3.19 | 0.54 | 0.025 || 14.1 | 20.6 | 0.21
S5HO || 3.26 | 0.52 | 0.013 — — —

SHP || 3.22 | 0.56 | 0.032 || 14.6 | 19.6 | 0.21

Table 3: Means (14, ), standard deviations (o4, ), and correla-
tion coefficients at lag 1 (y4,) for NCM times and CM times
for the HO and HP (sub)-sets.

and HP alike. This is not a surprise, as the headers of HP
packets do not differ from the headers of HO packets. It
is also very significant that 4, is very small, indicating
that Ty, can be modeled as lightly correlated noise.

e Moreover, g, is about 4.5 times larger than pg4,, with
much larger coefficients of variation: :TZ ~ 1.5,

2

against :Tl ~ 0.15. This implies that T}, is by far the
1

most important component of the detection stage, with

T4, being lightly correlated noise with a small mean.

In summary, Ty, is the main component determining the
service times of network IDSs. For this reason, we will de-
vote the remaining of the paper to its analysis.

2.3 Fitting a probability distribution to CM
service times — Exploratory analysis

It is well known that the overall performance of a queuing
system changes substantially if any of the processing steps
have service times with a heavy-tailed nature (eg. [13], [16]
and references therein). It is also well known that the pres-
ence of correlations in service times (and arrival times) affect
the operation of queuing systems, introducing effects which

cannot be accounted by modeling arrivals service times using
independent processes [17] [22]. The results in table 3 sug-
gest that both phenomena (heavy-tails and correlation) are
present in Ty,. Regarding heavy tails, coefficients of varia-
tion larger than one point to distributions with higher vari-
ance than the exponential. Regarding correlations, y4, in the
range 0.2 to 0.5 indicate that the correlations among service
rates of HP packets cannot be ignored. To see this, recall that
given a time series of N — oo samples from a white noise
process, the probability that the magnitude of the correla-
tion coefficient at any lag will exceed % is 5% [3]. With

N = 4e6, we have % ~ 0.001, showing the extreme sig-

nificance of the correlations in this case. In this paper we
concentrate on the characterization of the marginal distribu-
tion of Ty,, attempting to detect heavy-tail characteristics.
Correlation effects will be investigated in detail in our future
work.

There are several concepts and definitions of tailweight in
the statistical literature — [14]. Here we present two defi-
nitions which have been extensively used in network traffic
modeling — [21].

Definition 1 (Heavy-Tailedness in terms of asymptotics)
The distribution for a random variable X is called heavy-
tailed if

P(X >2z)~cz?, asz — 00, B> 0.
By this it is meant that for some constants 5 > 0 and ¢, we
have
P(X > x)
(cz=P)

The second definition is based on the concept of Condi-
tional Mean Exceedance defined below.

Definition 2 (Conditional Mean Exceedance) The Condi-
tional Mean Exceedance (CMFE) for a random variable X is
defined as

lim
r—00

=1 [17],21]0

CME(z) = E(X — z| X > z),
where E(-) denotes expected value — [14], Definition 3.4 O

If = describes the waiting time of a certain process,
CME(z) has a simple interpretation. It is how much more
time the process is expected to last, given that it has already
lasted for z time units.

Definition 3 (Heavy-Tailedness in terms of CME) A dis-
tribution is called heavy-tailed if CME(z) is an increasing
function of z and light-tailed if CME(z) is a decreasing
function of z. If CME(z) is constant, then the Cumulative
Distribution Function (CDF) of X must be the Exponential
distribution function — [14], Definition 3.5 O

We now define three distributions which are widely used
in traffic modeling: the Pareto distribution, the Exponential
distribution and the Lognormal distribution.

Definition 4 (Pareto distribution — [11]) The Pareto distri-
bution with location parameter a and shape parameter b has
CDF F'(z) given by:

Fz) =P(X <z)=1- (%)b ab>0,z>a (1)

with corresponding Probability Density Function (PDF)
f(z) = babz=*"1 O



Definition 5 (Exponential distribution — [11]) The Expo-
nential distribution with location parameter o and shape pa-
rameter 8 has CDF F(z) given by:

—Q

B

F(:c)zP(XSx):l—exp(—m ),ﬂ>0,m2a

with corresponding PDF f(z) = % exp (— z Ba) m|
Definition 6 (Lognormal distribution — [11]) The Lognor-
mal distribution with location parameter €, shape parameter
o and scale parameter m has PDF f(z) given by:

The CDF does not have a closed form O

The Pareto distribution is heavy-tailed according to both
Definition 1 and Definition 33. The Exponential distribution
is not heavy-tailed according to both definitions. The Log-
normal distribution in not heavy-tailed according to Defini-
tion 1 [21], but does have a monotonically increasing CME,
being therefore heavy-tailed according to Definition 3.

To determine if a heavy-tailed distribution (Pareto, Log-
normal or others) is a good fit for a sample is subject of ac-
tive research — eg. [7], [8], [9], [10], and references therein.
A thorough description of the various approaches and diffi-
culties is provided in [10]. We proceed on an exploratory
manner, analyzing properties of the sample related with Def-
initions 1 and 3.

Figure 2-(a) presents the CCDF (Complementary CDF)
plots for Ty, in the five data sets. CCDF plots are obtained by
graphing log;o[1 — F'(z)] vs. log;o(z). By taking logarithms
in equation (1) we are left with

logyo(1 — F(z)) = —blog;o() + blogq(a)

So, if a Pareto distribution with shape parameter b is a good
fit for a sample z1, za, - - -, N, then CCDF plots should ap-
proximately fall on a straight line, with slope —b. Visual
inspection suggests that linear fitting for CCDF can be at-
tempted in the five data sets for processing times in the range
20 ps up to about 200 us. For T, larger than 200 us, lin-
ear fit is no longer possible. Next, we consider the CME
plots, presented in figure 2-(b). CME(z) increases mono-
tonically in the range 20 us up to about 100 us for all data
sets, indicating that a Pareto or a Lognormal distribution
may provide adequate fit. For Tz, > 100 us, the behavior
of CME(z) is hard to characterize. Given these two items
(CCDF plots and CMFE plots), it is natural to define three
distinct regions for the distribution of Ty,. The bulk of the
distribution, corresponding to values less or equal to 20 us,
the Clipped Upper Tail (CUT), corresponding to the region
Ty, € (20 ps,100 us], and the Extreme Upper Tail (EUT),
where Tz, > 100 ps. The first two lines of table 4 display
the percentage of samples falling in the CUT and EUT re-
gions for each of the five data sets. The general conclusion
is that CUT roughly corresponds to the top 5% of the dis-
tribution, censoring the top 1%, which constitutes EUT. To

3We note that for a Pareto distribution with b > 1, QVE (z) = £25.

test for heavy-tailedness in CUT and EUT, we compare the
fits of Pareto, Exponential and Lognormal distributions to the
samples in each of these regions. For CUT, the location pa-
rameter is equal to 20, and for EUT the location parameter is
equal to 100. Maximum Likelihood Estimators (MLEs) were
used to estimate the shape and scale parameters for the three
distributions. Given a, the MLE for b in Pareto(a, b) is given
by b = SATED) J;’ = the MLE for 3 in Exponential(a, 3)
i=1 98\
is the sample mean of the a-shifted sample, i.e. {z; — a}.
Finally, MLEs for m and ¢ in Lognormal(a,m, o) follow
from the property that the logarithm of the a—shifted sample
is normally distributed with mean m and standard deviation
0. To compare the samples with the distributions we utilized
the x2 measure of discrepancy, defined below:

Definition 7 (x? measure of discrepancy — [18], [20])
Suppose we have observed N samples of a random variable
Y which we want to model using another model distribution
Z. We partition Z into k bins. Each bin has a probability p;
associated with it, which is the proportion of the distribution
Z falling into the sth bin. Let Y; be the number of observa-
tions that actually fell into the ith bin. The x? measure of
discrepancy is defined as XWQ, where X2 is given by:
k
Y; — Np:)®
X2 = (i — Np)® O
; Np;

The x2 measure of discrepancy is naturally suggested by
the classical x2 test of hypothesis. The difference here is
that one wants to compare the fit of several distributions to a
sample. The last two lines of Table 4 show the results. As
the x2 measure is sensitive to bin size [18], we repeated the
test for two bin sizes, for both CUT and EUT. The results
remain the same for both bin sizes. Lognormal fit is the best
for CUT in all data sets, except one. Exponential fit is the
best for EUT in all data sets. These results can be confirmed
in figure 2-(c) which shows the CDFs for data set 1 in both
the CUT and EUT regions, and the corresponding fits.

Size (%) 1HP | 2HP | 3HP | 4HP | SHP
CUT 5.65 | 5.59 | 3.03 | 3.80 | 4.75

EUT 1.16 | 0.46 | 0.38 | 0.82 | 0.81

CUT (w=1, 10) Log | Exp | Log | Log | Log
EUT (w=10, 100) || Exp | Exp | Exp | Exp | Exp

Table 4: Size of the CUT and EUT regions, and best fits for
different bin sizes in the CUT and EUT regions using the
chi-square metric.

3 Impact on IDS design and Conclu-
sions

The main conclusions from the previous section are: (1) Pro-
cessing times in Snort are dominated by the content match-
ing stage, denoted by T4,; (2) in contrast to general Unix
processes, which display strong heavy-tailedness [16], T,
has a Lognormal upper tail*, clipped at the top 1%. This ex-
treme 1% upper tail does not have heavy-tail characteristics.

4We note that the shape parameter for Unix processes in [16] falls in
the range 1.05 < b < 1.25. The shape parameter for Pareto fit of Ty, in



Evidence for heavy tails in service times of Unix processes
suggested the use of preemptive scheduling disciplines for
such systems [13], [16]. The results in this paper indicate that
service times in network IDSs are more regular than general
processes in a distributed computing environment. Hence,
preemptive disciplines are not necessary.

The long term objective of our research is to develop queu-
ing models for network IDSs, to serve as the basis for load
management and reconfiguration schemes [4], [15]. The de-
velopment of appropriate models for the service times of
IDSs is obviously an important element in this effort. The
results in this paper represent the first step in the develop-
ment of such models, which was the characterization of the
marginal distribution of the service times. We stress how-
ever that the Ty, time series is highly correlated. Queuing
models derived on basis of the marginal sample distributions
tend to underestimate the various metrics of operational per-
formance, such as packet loss and mean service times [22].
Work is currently in progress to develop a model of service
times incorporating the correlation effects. Such model could
be used as part of a monitoring scheme, in which the model
parameters are updated on line and used to compute on line
estimates for the metrics of operational performance to be
used in reconfiguration and load management. Work is in
progress as well to develop such monitoring schemes.
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Figure 1: Bimodality of processing times and packet sizes.

10 : :
10'

10° 10°

CM processing time (Td )
2

(a) CCDF plots for the five data sets.

250

— Set1
— Set2
— Set3
Set 4
Set5

200

E(T, —t[T, >1
4,
&
g

CME () =
g

50

L L L L L
0 100 200 300 400 500 600 700 800
d

CM processing time (T )

2

(b) QVE plots for the five data sets.

—— CUT sample

— Pareto fit

—— Exponential fit |4
Lognormal fit

60 70 80 90 100
1 T T
P
= 4
o
=
a — EUT sample
— Pareto fit

—— Exponential fit | 4
Lognormal fit

L L
4[00 500 600 700

(c) CDF plots: Pareto, Exponential and Lognormal fits in the
CUT (top plot — Lognormal is best) and EUT (bottom plot —
Exponential is best) regions for data set 1.

Figure 2: Investigating heavy tails in CM processing time.



