
Enforcing Kernel Security Invariants with
Data Flow Integrity

Chengyu Song, Byoungyoung Lee, Kangjie Lu, William Harris, Taesoo Kim, Wenke Lee
Georgia Institute of Technology

Abstract—The operation system kernel is the foundation of the
whole system and is often the de facto trusted computing base
for many higher level security mechanisms. Unfortunately, kernel
vulnerabilities are not rare and are continuously being introduced
with new kernel features. Once the kernel is compromised, attack-
ers can bypass any access control checks, escalate their privileges,
and hide the evidence of attacks. Many protection mechanisms
have been proposed and deployed to prevent kernel exploits.
However, a majority of these techniques only focus on preventing
control-flow hijacking attacks; techniques that can mitigate non-
control-data attacks either only apply to drivers/modules or im-
pose too much overhead. The goal of our research is to develop a
principled defense mechanism against memory-corruption-based
privilege escalation attacks. Toward this end, we leverage data-
flow integrity to enforce security invariants of the kernel access
control system. In order for our protection mechanism to be
practical, we develop two new techniques: one for automatically
inferring data that are critical to the access control system without
manual annotation, and the other for efficient DFI enforcement
over the inference results. We have implemented a prototype of
our technology for the ARM64 Linux kernel on an Android device.
The evaluation results of our prototype implementation show that
our technology can mitigate a majority of privilege escalation
attacks, while imposing a moderate amount of performance
overhead.

I. INTRODUCTION

The operation system (OS) kernel is often the de facto
trusted computing base (TCB) of the whole computer system,
including many higher level security solutions. For example,
the security of an application sandbox usually depends on the
integrity of the kernel. Unfortunately, kernel vulnerabilities are
not rare in commodity OS kernels like Linux, Windows, and
XNU. Once the kernel is compromised, attackers can bypass
any access control checks, escalate their privileges, and hide the
evidence of attacks. Among all kernel vulnerabilities, the ones
related to memory corruption are the most prevalent because
all commodity kernels are implemented in low-level unsafe
language like C and assembly. Memory corruption bugs are
also the most dangerous ones because they can grant attackers
great capabilities. For these reasons, most kernel attacks exploit
memory corruption vulnerabilities.

Existing solutions to this problem can be classified into

two main categories: off-line tools and runtime protection
mechanisms. Off-line tools [17, 32, 38, 62, 66] try to identify
potential kernel memory safety violations so that developers
can fix them before deployment. Although these tools have
successfully found many vulnerabilities in the kernel, they have
limitations. First, most bug-finding tools tend to generate lots of
false positives, which makes it hard for developers to filter out
the real bugs. Second, tools that can prove an implementation
is free of memory safety issues usually do not scale well. This
means they can only be applied to small, self-contained kernel
extensions [11, 47] or micro-kernels [35].

For runtime protection mechanisms, a majority focus on
protecting the control flow. Many mechanisms are proposed
to protect code integrity and stop malicious kernel extensions
from loading [55]. Others focus on preventing control-flow
hijacking attacks, such as ret2usr [33, 51] and return-oriented
programming (ROP) [39]. More recently, researchers have
demonstrated the feasibility of enforcing control-flow integrity
(CFI) in kernel space [22, 65]. However, in addition to problems
discovered in CFI [14, 27],a more fundamental problem is that,
because OS kernels are mainly data-driven, CFI can be easily
bypassed by non-control-data attacks [20]. For example, to
bypass discretionary access control (DAC), attackers just need
to overwrite the subject’s identity of the current process with
the one of the root/administrators.

Some technologies are capable of preventing non-control-
data attacks. For example, software fault isolation (SFI) [16,
25, 43, 63] can be used to isolate small “untrusted” modules
from tampering the core kernel components. However, a
recent study on Linux kernel vulnerabilities [18] discovered
that vulnerabilities in the core components are as common
as vulnerabilities in third-party drivers. The secure virtual
architecture [23] is able to provide full memory safety for
the kernel, but its performance overhead is too high to be
deployed in practice.

The objective of this work is to provide a defense system
that is both principled (i.e., cannot be easily bypassed by
future attacks) and practical (i.e., with reasonable performance
overhead). We achieve the first goal by utilizing data-flow
integrity (DFI) [15] to enforce kernel security invariants
against memory-corruption-based attacks. Similar to CFI, DFI
guarantees that runtime data-flow cannot deviate from the
data-flow graph generated from static analysis. For example,
data from a string buffer should never flow to the return
address on stack (control-data), or to the uid (non-control-data).
Utilizing this technique, we can enforce a large spectrum of
security invariants in the kernel to defeat different attacks. For
instance, to prevent rootkits from hiding malicious processes,
we can enforce that only the process scheduler can modify

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’16, 21-24 February 2016, San Diego, CA, USA
Copyright 2016 Internet Society, ISBN 1-891562-41-X
http://dx.doi.org/10.14722/ndss.2016.23218

the linked list of active processes. In this work, we focus on
enforcing invariants that are related to kernel access control
mechanisms (a.k.a. reference monitors) so as to defeat privilege
escalation attacks. Specifically, assuming a reference monitor
is implemented correctly, its runtime correctness relies on two
high-level security invariants [4]:

I. Complete mediation: attackers should not be able to
bypass any access control check; and

II. Tamper proof: attackers should not be able to tamper with
the integrity of either the code or data of the reference
monitor.

While this approach sounds intuitive at high level, enforc-
ing it with practical runtime performance overhead is very
challenging. First, unlike kernel extensions, which are usually
self-contained and use dedicated data structures, access control
checks are scattered throughout the kernel, and related data are
mixed with other data. Therefore, the protection technique must
be deployed kernel-wide. Moreover, without hardware support,
software-based DFI implementation can be very expensive,
e.g., the original enforcement technique from [15] imposed
an average 104% overhead for user-mode CPU benchmarks.
Since OS kernels tend to be more data intensive than those
CPU benchmarks, we expect the same technique will be even
more expensive for kernel protection.

We propose a system called KENALI that is both principled
and practical. KENALI consists of two key techniques. Our
first technique, INFERDISTS, is based on the observation that
although the protection has to be kernel-wide, only a small
portion of data is essential for enforcing the two security
invariants. For ease of discussion, we refer to this set of data
as distinguishing regions (formally defined in §IV-A). Hence,
instead of enforcing DFI for all kernel data, we only need to
enforce DFI over the distinguishing regions. Implementing this
idea must solve one important problem—what data belongs
to the distinguishing regions. To enforce INVARIANT I, we
must enforce CFI, so all control-data should be included. The
real challenge is non-control-data. As mentioned above, access
control checks are scattered throughout the kernel, and data
involved in these checks are usually mixed with non-critical
data in the same data structure. One solution, as used by many
kernel integrity checkers [10, 53, 54], is to identify these data
based on domain knowledge, execution traces, or analysis
of previous attacks. However, because these approaches are
not sound, attackers may find new attack targets to bypass
their protection. Alternatively, one can manually analyze and
annotate distinguishing regions. However, this approach does
not scale and is error-prone. Our technique, INFERDISTS,
overcomes these challenges with a new program-analysis-
based approach. Specifically, by leveraging implicit program
semantics, INFERDISTS is able to infer security checks without
any manual annotation. After this, by considering both data-
and control-dependencies of data that can affect each security
check, as well as sensitive pointers [28], INFERDISTS generates
a complete set of distinguishing regions.

Our second technique, PROTECTDISTS, is a new technique
to enforce DFI over the distinguishing regions. In particular,
since distinguishing regions only constitutes a small portion
of all kernel data, PROTECTDISTS uses a two-layer protection
scheme. The first layer provides a coarse-grained but low-

overhead data-flow isolation that prevents illegal data-flow
from non-distinguishing regions to distinguishing regions.
After this separation, the second layer then enforces fine-
grained DFI over the distinguishing regions. Furthermore,
because the access pattern to most data in the distinguishing
regions is very asymmetric—read accesses (checks) are usually
magnitudes more frequent than write accesses (updates)—
instead of checking the data provenance at every read in-
struction, PROTECTDISTS employs the opposite but equally
secure approach: checking if the current write instruction can
overwrite the target data, i.e., write integrity test (WIT) [3].
Combining these two techniques, namely, INFERDISTS and
PROTECTDISTS, KENALI is able to enforce the two security
invariants without sacrificing too much performance.

We implemented a prototype of KENALI that protects the
Linux kernel for the 64-bit ARM architecture (a.k.a. AArch64).
We chose AArch64 Linux for the following reasons. First,
INFERDISTS requires source code to perform the analysis, and
thanks to the success of Android, Linux is the most popular
open-sourced kernel now. Second, due to the complexity of
the Android ecosystem, a kernel vulnerability usually takes
a long cycle to patch.This means kernel defense techniques
play an even more critical role for Android. Third, among
all the architectures that Android supports, ARM is the most
popular. Moreover, compared to other architectures like x86-
32 [67] x86-64 [24] and AArch32 [68], there is little research
on efficient isolation techniques for AArch64. Despite this
choice, we must emphasize that our techniques are general and
can be implemented on other hardware architectures and even
other OS kernels (see §VII).

We evaluated the security and performance overhead of our
prototype implementation. The results show that KENALI is
able to prevent a large variety of privilege escalation attacks.
At the same time, its performance overhead is also moderate,
around 7-15% for standard Android benchmarks.

To summarize, this paper makes the following contributions:

• Analysis technique: We devised a systematic, formalized
algorithm to discover distinguishing regions that scales to
Linux-like, large commodity software (§IV-B).
• Design: We presented a new data-flow integrity enforcement

technique that has lower performance overhead and provides
identical security guarantees as previous approaches (§IV-C).
• Formalization: We formalized the problem of preventing

memory-corruption-based privilege escalation and showed
that our approach is a sound solver for this problem (§IV).
• Implementation: We implemented a prototype of KENALI

for the ARM64 Linux kernel, which utilizes a novel hardware
fault isolation mechanism (§V).
• Evaluation: We evaluated the security of KENALI with

various types of control-data and non-control-data attacks
(e.g., CVE-2013-6282) that reflect the real kernel privilege
escalation attacks used for rooting Android devices (§VI-C).
We also evaluated the performance overhead of our prototype
with micro-benchmarks to stress KENALI’s runtime compo-
nent, and end-to-end benchmark to measure the performance
overheads similar to what an end-user might experience.
Our evaluation showed that KENALI imposes acceptable
overheads for practical deployment, around 7% - 15% for

2

standard Android benchmarks (§VI-D).

II. PROBLEM SCOPE

In this section, we define the problem scope of our research.
We first discuss our threat model and assumptions. Then, we
provide motivating examples of our techniques and show how
they can bypass state-of-the-art defense techniques like CFI.

A. Threat Model and Assumptions

Our research addresses kernel attacks that exploit memory
corruption vulnerabilities to achieve privilege escalation. We
only consider attacks that originate from unprivileged code, such
as user-space application without root privilege. Accordingly,
attacks that exploit vulnerabilities in privileged system processes
(e.g., system services or daemons) are out-of-scope. Similarly,
because kernel drivers and firmwares are already privileged, we
do not consider attacks that originate from kernel rootkits and
malicious firmwares. Please note that we do not exclude attacks
that exploit vulnerabilities in kernel drivers, but only attacks
from malicious kernel rootkits. Other kernel exploits such as
denial-of-service (DoS), logical/semantic bugs, or hardware
bugs [34] are also out-of-scope. We believe this is a realistic
threat model because (1) it covers a majority of the attack
surface and (2) techniques to prevent the excluded attacks have
been proposed by other researchers and can be combined with
KENALI.

However, we assume a powerful adversary model for
memory corruption attacks. Specifically, we assume there is
one or more kernel vulnerabilities that allow attackers to read
and write word-size value at an arbitrary virtual address, as
long as that address is mapped in the current process address
space.

Since many critical non-control-data are loaded from disk,
another way to compromise the kernel is to corrupt the
disk. Fortunately, solutions already exist for detecting and
preventing such attacks. For example, secure boot [6] can
guarantee that the kernel and KENALI are not corrupted on
boot; SUNDR enables data to be stored securely on untrusted
servers [40]; ZFS enforces end-to-end data integrity using
the Merkle tree [12]; and Google also introduced a similar
mechanism called DMVerity [5] to protect the integrity of
critical disk partitions. For these reasons, we limit the attack
scope of this paper to memory-corruption-based attacks and
exclude disk-corruption-based attacks.

B. Motivating Examples

We use a real vulnerability, CVE-2013-6282 [46], as a
running example to demonstrate the various types of attacks
feasible under our threat model, and to illustrate how and why
these attacks can bypass the state-of-the-art defense techniques
like CFI and ad-hoc kernel integrity protection. Given this
vulnerability, we begin with an existing attack against the
Linux kernel. Then, step-by-step, we further demonstrate two
additional attacks showing how this original attack can be
extended to accomplish a full rooting attack.

1) Simple rooting attacks. CVE-2013-6282 allows attackers
to read and write arbitrary kernel memory, which matches our
adversary model. The corresponding rooting attack provides a

good example of how most existing kernel privilege escalation
exploits work:

a) Retrieving the address of prepare_kernel_cred() and
commit_creds(). Depending on the target system, they
can be at fixed addresses, or obtainable from the kernel
symbol table (kallsyms_addresses);

b) Invoking prepare_kernel_cred() and pass the results to
commit_creds(), then the kernel will replace the credential
of the current thread with one of root privilege.

Step b can be done in several ways: attackers can overwrite
a function pointer to a user mode function that links these two
functions together (i.e., ret2usr). Alternatively, attackers can
also link them through return-oriented programming.

2) Bypassing CFI with non-control-data attacks. The above
attack can be prevented by kernel-wide CFI [22]. But CFI can
be easily bypassed by non-control-data attacks: by locating the
cred structure and overwriting the euid field, attackers can still
escalate the privilege to the root user. The cred structure can be
located in many ways: (1) if kallsyms is available and contains
the address of init_task, we can easily traverse the process
list to locate the task_struct of the current process, then
task_struct->cred; (2) if there is a vulnerability that leaks
the stack address (e.g., CVE-2013-2141), attackers can directly
obtain the address of the thread_info structure, then follows
the links to locate the task_struct; and (3) with arbitrary
memory read capability, attackers can also scan the whole
kernel memory and use signature matching to identify the
required data structures [41].

3) Bypassing CFI with control-data attacks. In this example,
we designed a new attack to demonstrate another limitation of
CFI. Specifically, to prevent root privilege from being acquired
through compromising system daemons, Android leverages
SELinux, a mandatory access control mechanism, to further
restrict the root privilege [57]. Therefore, disabling SELinux
is a necessary step to gain the full root privilege. This can be
achieved through control-data attacks that do not violate CFI.
In particular, SELinux callbacks are stored in a dispatch table
that has a special initialization phase:

1 // @security/capability.c
2 void security_fixup_ops(struct security_operations *ops) {
3 if (!ops->sb_mount)
4 ops->sb_mount = cap_sb_mount;
5 if (!ops->capable)
6 ops->capable = cap_capable;
7 ...
8 }
9 static int cap_sb_mount(const char *dev_name, ...) {

10 return 0;
11 }

Basically, if a Linux Security Module (LSM) does not
implement a hook, its callback function will be set to the
default one (e.g., cap_sb_mount). Therefore, the default callback
functions are also valid control transfer targets, but they usually
perform no checks before directly returning 0. Based on this
observation, SELinux can then be disabled by setting every
callback function pointer to its default one.

4) Diversity of non-control-data attacks. Some existing
kernel integrity protection mechanisms also try to protect
non-control-data [10, 53, 54], such as uid. However, these
approaches are inherently limited because there can be many

3

Clang/LLVM

Android
Linux kernel

Analysis

·
Instrumented

kernel

code

data

Assembler
(as)

Instrumentation

Region isolation·

§3.2

§3.3

(§3.3.1)
Shadow objects (§3.3.2)
Safe stack (§3.3.3)

·

Control data· (§3.2.1)
Non-control data (§3.2.2)·

Shadow
objects (§5.4)

(§5.1)

Data-flow
isolation

(§5.2-3)

Code integrity
(MMU & Kernel)

(§5.5)safe stack

Foundation of analysis techniques (§4)

Fig. 1: Overview of our approach, which consists two major steps.
In the first step, we use off-line program analysis to infer memory
regions that must be protected. In the second step, we use a lightweight
runtime protection mechanism to guarantee data-flow integrity for
regions discovered in the first step.

different non-control-data involved in access control. For
example, from the target kernel we evaluated, we found that
2,419 data structures contain critical data. Here, we use a
concrete non-control-data attack to demonstrate this limitation
of previous work.

Specifically, the above two steps only grant attackers
temporary root privilege until the next reboot (a.k.a. tethered
root). To acquire permanent root privilege (untethered root),
the de facto way is to install the su utility. To do so, however,
there is one more protection to bypass: read-only mounting.
To protect critical system files, the system partition on most
Android devices is mounted as read-only. Existing rooting
attacks achieve this goal by remounting the partition as writable,
but we achieve this goal through another non-control-data
attacks:

1 // @fs/namespace.c
2 int __mnt_is_readonly(struct vfsmount *mnt) {
3 if (mnt->mnt_flags & MNT_READONLY)
4 return 1;
5 if (mnt->mnt_sb->s_flags & MS_RDONLY)
6 return 1;
7 return 0;
8 }

As we can see, by overwriting data fields like mnt_flags
and s_flags, attackers can bypass the read-only mount and
overwrite the system partition.

III. TECHNICAL APPROACH

A. Overview

Figure 1 provides an overview of our technical approach,
which consists of two steps. In the first step, we use a novel
program analysis technique INFERDISTS to systematically infer
a complete and minimized set of distinguishing regions. In
the second step, we employ a lightweight runtime protection
technique, PROTECTDISTS, to enforce DFI over the inference
result.

B. Inferring Distinguishing Regions

In this subsection, we present our approach to the inference
problem. The challenge is that for security, our solution must
be sound (i.e., no false negatives), but for performance, we
want the size of the inference result to be as small as possible.

1) Control-Data: As discussed in §I, INVARIANT I can
be violated via control-data attacks. Therefore, all control-data
must be included as distinguishing regions so as to enforce CFI.
Control-data in the kernel has two parts: general control-data
and kernel-specific data. General control-data (e.g., function
pointers) can be identified based on the type information [36].
Kernel-specific data, such as interrupt dispatch table, have been
enumerated in [22]. Since our approach to infer these data does
not differ much from previous work, we omit the details here.

2) Non-Control-Data: The challenge for inferring distin-
guishing non-control-data is the soundness, i.e., whether a
proposed methodology can discover all distinguishing regions.
To address this challenge, we developed INFERDISTS, an
automated program analysis technique. The key idea is that
access controls are implemented as security checks, and while
a kernel may have many security checks scattered throughout
different components, they all follow one consistent semantic:
if a security check fails, it should return a security related
error codes. For example, a POSIX-compatible kernel returns
-EACCES (permission denied) [60] to indicate the current user
does not have access to the requested resources. Similarly,
Windows also has ERROR_ACCESS_DENIED [59]. Leveraging this
observation, INFERDISTS is able to collect security checks
without manual annotation. Then, distinguishing regions can
be constructed via standard dependency analysis over the con-
ditional variables of security checks. Next, we use Example 1
as a running example to demonstrate how INFERDISTS works.
The formal model of INFERDISTS and proof for its soundness
are provided in §IV.

1 int acl_permission_check(struct inode *inode, int mask) {
2 unsigned int mode = inode->i_mode;
3 if (current_cred->fsuid == inode->i_uid)
4 mode >>= 6;
5 else if (in_group_p(inode->i_gid))
6 mode >>= 3;
7 if ((mask & ~mode &
8 (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
9 return 0;

10 return -EACCES;
11 }

Example 1: A simplified version of the discretionary access control
(DAC) check in the Linux kernel.

In step (1), INFERDISTS collects the return instructions R
that may return an error code that we are interested in.

In Example 1, the function returns -EACCES at line 10, so
INFERDISTS include this instruction into R.

In step (2), INFERDISTS collects the branch instructions I
that determine if a run either executes a return instructions in R
or performs a potentially privileged operation. The conditional
variables B of I will be distinguishing variables of this function.

In Example 1, the condition of the if statement at line 7 is
the distinguishing conditional variable of the function. Note,
the if statement at line 3 is not included because it is post-
dominated by the if statement at line 7.

It is worth mentioning that we need to handle some special
cases in step (2). First, in some cases, when a security check
fails, it will not directly return an error but will continue to
another alternative check, e.g., in the setuid system call, three
checks are performed:

4

1 if (!nsown_capable(CAP_SETUID) &&
2 !uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid))
3 return -EPERM;

In this case, when the first check nsown_capable failed, the
control flow will go to the second, and possibly the third check.
Although these are all security checks, in the control flow graph
(CFG), only the branch instruction for the last uid_eq check will
lead to an error return. If we only consider this branch, then we
will miss the first two checks. Therefore, we must also consider
branch(es) that dominate a security check. However, naively
including all dominators will introduce many false positives.
To reduce false positives, INFERDISTS conservatively excludes
two cases: (a) a branch can lead to non-related error return
(e.g., -EINVAL) and (b) a branch instruction is post-dominated
by either a security check or checks in (a), i.e., diamond-shaped
nodes.

In step (3), INFERDISTS collects and returns all memory
regions that have dependencies on conditional variables in
B. For completeness, we consider both data- and control-
dependencies, and the analysis is inter-procedural and iterative,
i.e., we perform the analysis multiple times until there is no
new data get included.

In Example 1 the if statement on line 7 has two conditional
variables, mask and mode. Data-dependency over mode would
include i_mode (line 2) and control-dependency would include
i_uid, fsuid (line 3), and the return value of in_group_p
(line 5). Because our dependency analysis is inter-procedural,
we will also include i_gid.

3) Sensitive Pointers: Pointers to sensitive regions must be
protected as well; otherwise, attackers can indirectly control
the data in distinguishing regions by manipulating these
pointers [28]. For instance, instead of overwriting the euid
field of a cred structure, an attacker could overwrite the
task_struct->cred pointer to point to a cred structure whose
euid == 0.

Hence, after collecting control- and non-control-data, the
analysis collects the sensitive pointers of a program, and
includes such pointers in distinguishing regions. A pointer
is sensitive if it points to a data structure that contains
distinguishing regions. There are two points worth noting: (1)
sensitive pointers are defined recursively and (2) even with the
existence of generic pointers, we still can collect a sound over-
approximation set of sensitive pointers using a static program
analysis, so no false negatives will be introduced.

C. Protecting Distinguishing Regions

After collecting the distinguishing regions, the next step is to
enforce DFI over the inference result. The challenge for this step
is how to minimize the performance overhead on commodity
processors that lack support for fine-grained data-flow tracking.
To address this challenge, our key observation is that, after
(conceptually) separating the memory into distinguishing and
non-distinguishing regions, there could be three types of data-
flow: (1) within non-distinguishing regions, (2) between two
regions, and (3) within distinguishing regions. Our goal is
to prevent attackers from introducing illegal data-flow to
compromise distinguishing regions. Obviously, it is not possible
to compromise distinguishing regions based on the first type of
data-flow, but most legal data-flows actually belong to this type.

Therefore, if we purely rely on DFI to vet all data-flows, there
will be a huge number of unnecessary checks. Based on this
observation, we design a two-layer scheme: the first layer is a
lightweight data-flow isolation mechanism that prevents illegal
data-flow of the second type; then we use the more expensive
DFI enforcement to prevent illegal data-flow of the third type.
With this two-layer approach, we can reduce the performance
overhead without sacrificing security guarantees.

1) Data-Flow Isolation: There are two general approaches
to enforce data-flow isolation: software-based and hardware-
based. Software fault isolation is not ideal because it requires
instrumenting a majority of write operations. For example, in
our prototype implementation, only 5% of write operations can
access distinguishing regions; thus, relying on SFI would end
up with instrumenting the remaining 95% of write operations.
At the same time, not all hardware isolation mechanisms are
equally efficient. Since distinguishing regions are actually not
continuous, but interleaved with non-distinguishing regions,
it would be ideal if the hardware could support fine-grained
memory isolation. Unfortunately, most commodity hardware
does not support this but only provides coarse-grained isolation
mechanisms. Based on their corresponding overhead (from
low to high), the available options on commodity hardware
are: the segmentation on x86-32 [67], the execution domain
on ARM-32 [68], the WP flag on x86-64 [24, 65], hardware
virtualization [52, 56], and TrustZone [9].

In this work, we explored the feasibility of hardware-based
data-flow isolation for AArch64, which is becoming more and
more popular for mobile devices, but has not been well studied
before. For AArch64, most of the aforementioned features
are not available, except TrustZone1; but world switch for
TrustZone is usually very expensive because it needs to flush
the cache and sometimes the TLB (translation look-aside buffer)
too. To solve this problem, we developed a novel, virtual address
space-based isolation mechanism. Specifically, to reduce the
overhead of context switching between different virtual address
spaces, modern processors usually tag the TLB with an identifier
associated with the virtual address space. Utilizing this feature,
we can create a trusted virtual address space by reserving
an identifier (e.g., ID = 0). By doing so, context switching
between the untrusted context and trusted context becomes less
expensive because it requires neither TLB flush nor cache flush
(see §V for more details).

2) Write Integrity Test: In addition to preventing illegal data-
flow from non-distinguishing regions to distinguishing regions,
we use DFI to prevent illegal data-flow within distinguishing
regions. However, instead of checking data provenance at read,
we leveraged the write integrity test (WIT) technique [3]. We
chose this technique for the following reasons. First, we found
that the memory access pattern for distinguishing regions is
very asymmetric, e.g., reading uid is prevalent, but updating
uid is very rare. Thus, by checking write operations, we can
reduce the number of checks that need to be performed. Second,
WIT reasons about safe and unsafe write operations and only
instruments unsafe writes, which matches another observation—
the majority of writes to the distinguishing regions are safe and
do not require additional checks. Finally, compared to memory

1Hardware virtualization extension is defined, but a majority of processors
do not implement it; and for those who have this feature, the bootloader usually
disabled it.

5

safety enforcement techniques [23], WIT is less expensive
because it does not require tracking pointer propagation.
Because of page limitation, we omit the details of WIT; please
refer to the original paper for more details. However, in order
to apply this technology to the kernel, we made one change.
In particular, the original WIT implementation used a context-
sensitive field-insensitive point-to analysis, but since OS kernels
usually contain a lot of generic pointers and linked lists, we
replaced the point-to analysis with a context-sensitive and field-
sensitive analysis that is tailored for the kernel [13].

3) Shadow Objects: Shadow objects is a work-around
for the lack of fine-grained hardware isolation mechanism.
Specifically, as a hardware protection unit (e.g., page) may
contain both distinguishing and non-distinguishing regions,
once we write-protect that page, we also have to pay additional
overhead for accessing non-distinguishing regions. One solution
to this problem is to manually partition data structures that
contain mixed regions into two new data structures [58].
However, this approach does not scale and requires heavy
maintenance if the data structure changes between different
kernel versions. Our solution to this problem is shadow objects,
i.e., if a kernel object contains both regions, then we will create
two copies of it—a normal copy for the non-distinguishing
regions and a shadow copy for the distinguishing regions.
Shadow memory may consume up to two times the original
memory, but because commodity OS kernels usually use
memory pools (e.g., kmem_cache) to allocate kernel objects, it
allows us to reduce the memory overhead by dedicating different
pools to objects that need to be shadowed. This nice feature
also allows us to eliminate maintaining our own metadata for
shadow objects allocation/free; and to perform fast lookup—
giving a pointer to normal object, its shadow object can be
acquired by adding a fixed offset.

4) Safe Stack: Similar to heap, stack also needs a “shadow”
copy for the lack of fine-grained isolation. However, stack is
treated differently for its uniqueness. First, stack contains many
critical data that are not visible at the source code level, such
as return addresses, function arguments, and register spills [21].
Second, the access pattern of these critical data is also different:
write accesses are almost as frequent as read accesses. For these
reasons, we leveraged the safe-stack technique proposed in [36],
with a few improvements to make this technique work better
for the kernel. First, we used more precise inter-procedural
analysis to reduce the number of unsafe stack objects from
42% to 7%. Second, as the number of unsafe stack objects
is very small, instead of using two stacks, we keep only one
safe stack and move all unsafe objects to the heap to avoid
maintaining two stacks.

IV. FORMAL MODEL

To demonstrate that our technical approach is correct, we
formalize the problem of preventing privilege escalation via
memory corruption and describe an approach to solve the
problem. In §IV-A, we formulate the problem of rewriting
a monitor with potential memory vulnerabilities to protect
privileged system resources. In §IV-B, we formulate the sub-
problem of inferring a set of memory regions that, if protected,
are sufficient to ensure that a monitor protects privileged
resources. In §IV-C, we formulate the problem of rewriting a
program to protect a given set of memory regions. In §IV-D, we

show that our approaches to solve the inference and protection
problems can be composed to solve the overall problem.

A. Problem Definition

1) A language of monitors: A monitor state is a valuation
of data variables and address variables, where each address is
represented as a pair of a base region and an offset. Let the space
of machine words be denoted Words and let the space of error
codes be denoted ErrCodes ⊆Words. Let the space of memory
regions be denoted Regions, and let an address be a region
paired with a machine word, i.e., Addrs = Regions×Words.

Let the space of control locations be denoted Locs, let
the space of protection colors be denoted colors, let the space
of data variables be denoted D, and let the space of address
variables be denoted A.

Definition 1: A monitor state consists of (1) a control
location, (2) a map from each address to its size, (3) a map
from each address to its protection color, and (4)–(6) maps
from D, A, and Addrs to the word values that they store. The
space of monitor states is denoted Q.

A monitor instruction is a control location paired with
an operation. The set of operations contains standard read
operations read a, d, conditional branches bnz d, returns
ret d, arithmetic operations, and logical operations. The set of
operations also contains the following non-standard operations:

(1) For each protection color c ∈ colors, each address
variable a ∈ A, and each data variable d ∈ D, alloc[c] a, d
allocates a new memory region R ∈ Regions, sets the size of
R to be to the word stored in d, and stores the address (R, 0)
in a. The space of allocation instructions is denoted Allocs.

(2) For each protection color c ∈ colors, each data variable
d ∈ D, and each address variable a ∈ A, write[c] d, a attempts
to write the value stored in d to the address stored in a. Let a
store the address (R, o). If in the current state, the color of R
is c, then the write occurs; otherwise, the program aborts. If a
stores an address inside of its base region, then the write is safe;
otherwise, the write is unsafe. The space of write instructions
is denoted Writes.

Definition 2: For each instruction i ∈ Instrs, the transition
relation of i is denoted σ[i] ⊆ Q×Q.

We refer to σ as the unrestricted transition relation, as it places
no restriction on the target address of a write outside of a
region (in contrast to restricted transition relations, defined in
Defn. 5). The formal definitions of the transition relations of
each instruction follow directly form the instruction’s informal
description and thus are omitted.

Definition 3: A monitor is a pair (I, A), where I ∈ Instrs∗

is a sequence of instructions in which (1) each variable is
defined exactly once and (2) only the final instruction is a return
instruction; A ⊆ Allocs are the allocation sites of privileged
regions. The space of monitors is denoted Monitors = Instrs∗×
P(Instrs).

A run of M is an alternating sequence of states and
instructions such that adjacent states are in the transition relation
of the unrestricted semantics of the neighboring instruction; the
runs of M under the unrestricted semantics are denoted Runs(M).

6

The safe runs of M are the runs in which each write instruction
only writes within its target region.

A monitor M′ ∈ Monitors is a refinement of M if each run
of M′ is a run of M. M′ is a non-blocking refinement of M if (1)
M′ is a refinement of M and (2) each safe run of M is a run of
M′.

2) Monitor consistency: A monitor inconsistency is a pair
of runs (r0, r1) from the same initial state, where r0 accesses
a privileged region and r1 returns an error code.

A monitor is weakly consistent if for each run, the monitor
exclusively either accesses privilege regions or returns an error
code. That is, monitor M = (I, A) ∈ Monitors is weakly
consistent if there is no run r ∈ Runs(M) such that (r, r) is an
inconsistency. A core assumption of our work, grounded in our
study of kernel access control mechanisms, is that practical
monitors are usually written to be weakly consistent.

A monitor is strongly consistent if for each initial state, the
monitor exclusively either accesses privileged regions or returns
an error code. That is, M is strongly consistent if there are no
runs r0, r1 ∈ Runs(M) such that (r0, r1) is an inconsistency.

3) The consistent-refinement problem: Each strongly consis-
tent monitor is weakly consistent. However, a monitor M may
be weakly consistent but not strongly consistent if it contains a
memory error that prohibits M from ensuring that all runs from
a given state either access privileged regions or return error
codes. The main problem that we address in this work is to
instrument all such monitors to be strongly consistent.

Definition 4: For monitor M, a solution to the consistent-
refinement problem REFINE(M) is a non-blocking refinement
of M (Defn. 3) that is strongly consistent.

We have developed a program rewriter, KENALI, that
attempts to solve the consistent-refinement problem. Given a
monitor M, KENALI first infers a set of distinguishing allocation
sites A for which it is sufficient to protect the integrity of all
regions in order to ensure consistency (§IV-B). KENALI then
rewrites M to protect the integrity of all regions allocated at A
(§IV-C). The rewritten module M′ is a non-blocking refinement
of M, and all potential inconsistencies of M′ can be strongly
characterized (§IV-D).

B. Inferring distinguishing regions

1) Problem formulation: We now formulate the problem of
inferring a set of memory regions that are sufficient to protect
a monitor to be strongly consistent. We first define a semantics
for monitors that is parameterized on a set of allocation sites A,
under which the program can only modify a region allocated
at a site in A with a safe write.

Definition 5: For allocation sites A ⊆ Allocs and instruc-
tion i ∈ Instrs, the restricted semantics of R σA(i) ⊆ Q×Q
is the transition relation over states such that: (1) if i is not a
write, then σA[i] is identical to σ[i]; (2) if i is a write, then
for an unsafe write, the program may write to any region not
allocated at a site in A

For each monitor M ∈ Monitors, the runs of M under the
restricted semantics for R are denoted RunsR(M).

The distinguishing-site inference problem is to infer a set
of allocation sites A such that if all regions allocated at sites
in A are protected, then the monitor is consistent.

Definition 6: For each monitor M = (I, A) ∈ Monitors and
set of regions, a solution to the distinguishing-site inference
problem DISTS(M) is a set of allocation sites A′ ⊆ Allocs such
that M is consistent under the restricted semantics RunsA′(M).
We refer to such a set A′ as distinguishing sites for M.

2) Inferring distinguishing sites: In this section, we present
a solver, INFERDISTS, for solving DISTS. INFERDISTS pro-
ceeds in three steps: (1) INFERDISTS collects the return
instructions R that may return an error code. (2) INFERDISTS
collects the condition variables B of the branch instructions
that determine if a run either executes a return instructions
in R or accesses any memory region. (3) INFERDISTS returns
the dependency sites of all condition variables of B. We now
describe phases in detail.

a) Background: data-dependency analysis: For monitor
M, data variable x ∈ D, and allocation site a ∈ Allocs, a
is a dependency site of x if over some run of M, the value
stored in some region allocated at a partially determines the
value stored in x (the formal definition of a data dependency
is standard) [2]. The data-dependency-analysis problem is to
collect the dependency sites of a given set of data variables.

Definition 7: For a monitor M ∈ Monitors and data
variables D ⊆ D, a solution to the data-dependency-analysis
problem DEPS(M, D) is a set of allocation sites that contain the
dependency sites of all variables in D.

Our solver for the DISTS problem, named INFERDISTS, con-
structs instances of the DEPS problem and solves the instances
by invoking a solver, INFERDEPS. The implementation of
INFERDEPS used by INFERDISTS is a field-sensitive and
context-sensitive analysis based on previous work [13].

b) Phase 1: collect error-return instructions: Phase 1
of INFERDISTS collects an over-approximation E of the set
of instructions that may return error codes. While in principle
the problem of determining whether a given control location
returns an error code is undecidable, practical monitors typically
use simple instruction sequences to determine the codes that
may be returned by a given instruction. Thus, INFERDISTS
can typically collect a precise set R using constant folding, a
standard, efficient static analysis [2].

c) Phase 2: collect distinguishing condition variables:
After collecting an over-approximation E of the instructions
that may return error codes, INFERDISTS collects an over-
approximation C of data variables that determine if a program
returns an error code or accesses a sensitive resource; we refer
to such data variables as distinguishing condition variables.
INFERDISTS collects C by performing the following steps:
(1) INFERDISTS computes the post-dominator relationship
PostDom ⊆ Instrs× Instrs, using a standard efficient algorithm.
(2) INFERDISTS computes the set of pairs ImmPred ⊆
Instrs × Instrs such that for all instructions i, j ∈ Instrs,
(i, j) ∈ ImmPred if there is a path from i to j that contains
no post-dominator of i. ImmPred can be computed efficiently
from M by solving standard reachability problems on the
control-flow graph of M. (3) INFERDISTS collects the set of
branch instructions B such that for each branch instruction

7

b ≡ bnz x, T, F ∈ B, there is some error-return instruction e ∈ E
and some access a ∈ accesses such that ImmPred(b, T) and
ImmPred(b, F). (4) INFERDISTS returns all condition variables
of instructions in B.

d) Phase 3: collect data dependencies of conditions:
After INFERDISTS collects a set of distinguishing condition
variables C, it collects the dependency sites A′ of C by invoking
INFERDEPS (Defn. 7) on M and C.

C. Protecting distinguishing regions

1) The region-protection problem: For monitor M and set
of allocation sites A ⊆ Allocs, the region-protection problem is
to color M so that it protects each region allocated at each site
in A.

Definition 8: For each monitor M ∈ Monitors and set of
allocation sites A ⊆ Allocs, a solution to the distinguishing-
site-protection problem DISTSPROT(M, A) is a monitor M′ ∈
Monitors such that each run of M′ under the unrestricted
semantics (Defn. 2) is a run of M under the restricted semantics
for A (Defn. 5).

2) Background: writes-to analysis: For module M ∈
Monitors, the writes-to analysis problem is to determine, for
each write instruction w in a monitor, the set of regions that
w may write to in some run of M.

Definition 9: For monitor M ∈ Monitors, a solution to the
writes-to analysis problem WRTO(M) is a binary relation R ⊆
Writes× Allocs such that if there is some run of M in which
a write-instruction w ∈ Writes writes to a region allocated at
allocation site a ∈ Allocs, then (w, a) ∈ R.

Our implementation of PROTECTDISTS uses a writes-to analysis
SOLVEWRTO, which is built from a points-to analysis provided
in the LLVM compiler framework [42].

3) A region-protecting colorer: Given an input monitor
M ∈ Monitors and a distinguishing set of allocation sites
A ⊆ Allocs, PROTECTDISTS solves the protection problem
DISTSPROT(M, A) using an approach that is closely related to
the WIT write-integrity test [3]. In particular, PROTECTDISTS
performs the following steps: (1) PROTECTDISTS obtains a
writes-to relation W by invoking SOLVEWRTO on the writes-to
analysis problem WRTO(M). (2) PROTECTDISTS constructs the
restriction of W to only allocation sites in A, denoted WA. (3)
PROTECTDISTS collects the set C of connected components of
W , and for each component C ∈ C, chooses a distinct color
cC . (3) PROTECTDISTS replaces each allocation instruction
alloc[0] a, d of M in component C ∈ C with the “colored”
instruction alloc[cC] a, d. (4) PROTECTDISTS replaces each
write instruction write[0] a, d of M in component D ∈ C with
the “colored” instruction write[cD] a, d.

PROTECTDISTS may thus be viewed as a “paramaterized
WIT” that uses WIT’s technique for coloring write-instructions
and regions to protect only the subset of the regions that
a monitor may allocate to determine whether to access a
privileged region or return an error code.

D. Protected monitors as refinements

In this section, we characterize the properties of modules in-
strumented by solving the distinguishing-site inference (§IV-B)

and protection problems (§IV-C). Let the module instrumenter
KENALI be defined for each monitor M ∈ Monitors as follows:

KENALI(M) = PROTECTDISTS(M, INFERDISTS(M))
KENALI does not instrument a monitor to abort unnecessarily
on runs in which the monitor does not perform an unsafe write.

Theorem 1: For each monitor M ∈ Monitors, KENALI(M)
is a non-blocking refinement of M.

While the modules generated by KENALI may have access-
control inconsistencies, each inconsistency can be characterized
by the results of the points-to analysis used by PROTECTDISTS.

Theorem 2: For each monitor M ∈ Monitors, let W be the
writes-to relation of M found by SOLVEWRTO (Defn. 9). If
(r0, r1) is an inconsistency of KENALI(M), then r0 is of the
form q0, . . . , qn, (w ≡ write a, d), qn+1, and there are a pair of
regions R0 6= R1 ∈ Regions allocated at sites A0, A1 ∈ Allocs
such that (1) R0 is the target region of w, (2) R1 is the region
written by w, and (3) A0 and A1 are in the writes-to set for w
in W .

Our practical evaluation of our approach (§VI-B) indicates
that the accuracy of state-of-the-art points-to analyses greatly
restricts the potential for inconsistencies in rewritten programs.
Proofs of all theorems will be provided in an extended version
of this article.

V. A PROTOTYPE FOR ANDROID

In this section, we present the prototype implementation
for KENALI. As a demonstration, we focus on the AArch64
Linux kernel that powers Android devices. We start this section
with a brief introduction of the AArch64 virtual memory
system architecture (VMSA) and how we leveraged various
hardware features to implement data-flow isolation (§V-A).
Next, we describe the techniques we used to enforce MMU
integrity (§V-B). Then we discuss the challenges we had to
overcome to implement the shadow objects technique on top
of the Linux SLAB allocator (§V-C). Finally, we describe
our implementation of safe stack for this particular prototype
(§V-D).

perm: rw

Virtual address Physical pages

TTBR1

(PAGE_OFFSET) perm: r-

Shadow

task_struct {...}task_struct {...}

task_struct {...}

Kernel

(SHADOW_OFFSET)

addr space

addr space context switch

shadow space

 TTBR0 ← (SHADOW_ASID||SHADOW_PG_DIR)

Fig. 2: Shadow address space of KENALI. Under this protection
scheme, the same physical memory within different address spaces
has different access permissions. Our target platform stores ASID in
TTBR0, so we use the bottom half of the VA as our shadow address
space and dedicate ASID 0 to this address space. Note that, although
the bottom half of the VA is also used for user space memory, because
the ASID of the shadow address space is reserved, it does not conflict
with any user address space.

8

A. Data-flow Isolation

For this prototype, we developed a new virtual address space
isolation-based technique that leverages several nice features of
the AArch64 virtual memory system architecture (VMSA) [7].

1) AArch64 VMSA: The AArch64 supports a maximum of
48-bit virtual address (VA), which is split into two parts: the
bottom part is for user space, and the top part is for kernel
space. VA to PA (physical address) translation descriptors are
configured through two control registers: TTBR0 (translation
table base register) for the bottom half and TTBR1 for the top
half. To minimize the cost of context switch, the AArch64 TLB
has several optimizations. First, it allows global pages (mainly
for kernel), i.e., translation results are always valid regardless
of current address space. Second, each process-specific VA
is associated with an ASID (address space identifier), i.e.,
translation results are cached as (ASID + VA) ⇒ PA.

2) Shadow Address Space: Our data-flow isolation imple-
mentation leverages the ASID tagging feature and is based
on shadow address space, as illustrated in Figure 2. Under
this isolation scheme, the same physical page is mapped into
two different address spaces with different access permissions.
Although the shadow address space technique is not new, the
key advantage of our approach is that it does not require
TLB flush for context switch. More specifically, most previous
systems map the same physical page at the same VA. However,
because kernel memory is mapped as global, context switching
always requires TLB flush to apply the new permission. Our
approach instead maps the same physical memory at two
different VAs. This allows us to leverage the ASID tagging
feature to avoid TLB flush for context switch. Another benefit
of this approach is that since it does not change the access
permissions of global pages, it is not subject to multi-core-
based attacks, i.e., when one core un-protects the data, attackers
can leverage another core to attack.

3) Atomic Primitive Operations: Apparently we cannot
keep the shadow address space always available; otherwise
attackers can just write to the shadow address. Therefore, we
only switch to the shadow address space whenever necessary
and immediately switch back to the original (user) context
after the operation is done. Moreover, since the kernel can
be preemptive (as our target kernel), we also need to disable
interruption under the shadow address space to prevent the
operation from being interrupted. For these reasons, we want to
make every operation under the shadow address space atomic
and as simple as possible. Currently, we support the following
atomic primitive operations: write a single 8-, 16-, 32-, and
64-bit data, memcpy, and memset. Example 2 gives an example
of performing an atomic 64-bit write operation in the shadow
address space.

1 ; performing *%addr = %value
2 mrs x1, daif ; save IRQ state
3 msr daifset, #2 ; disable IRQ
4 mrs x2, ttbr0_el1 ; save current ttbr0
5 msr ttbr0_el1, %shadow_pgd_and_asid ; context switch
6 str %value, %addr ; update shadow object
7 dmb ishst ; store barrier
8 msr ttbr0_el1, x2 ; restore ttbr0
9 isb ; instruction barrier

10 msr daif, x1 ; restore IRQ

Example 2: An example of performing an atomic 64-bit write
operation in the shadow address space.

B. MMU Integrity

Since our isolation is based on virtual address space, we
must guarantee that attackers cannot compromise our isolation
scheme. We achieve this goal by enforcing three additional
security invariants:

III. MMU isolation: We enforce that only MMU management
code can modify MMU-related data, including hardware
configuration registers and page tables.

IV. Code integrity: We enforce that attackers cannot modify
existing kernel code or launch code injection attacks.

V. Dedicated entry and exit: We enforce that MMU man-
agement code is always invoked through dedicated entries
and exits, so that attackers cannot jump to the middle of
an MMU function and launch deputy attacks.

1) MMU Isolation: Our enforcement technique for INVARI-
ANT III is similar to HyperSafe [65] and nested kernel [24].
First, we enforce that only MMU management code can modify
MMU-related configuration registers. (1) Because AArch64
uses one single instruction set that is fix-sized and well aligned,
we statically verify that no other code can modify MMU
configuration registers. (2) For configuration registers whose
values do not need to be changed, such as TTBR1, we enforce
that they are always loaded with constant values. (3) For
registers that can be re-configured like SCTLR, we enforce that
the possible values either provide the same minimal security
guarantees (e.g., enabling and disabling WXN bit does not affect
the protection because page tables can override) or crash the
kernel (e.g., since the kernel VA is much higher than PA,
disabling paging will crash the kernel).

The second step is to enforce that all memory pages used for
page tables are mapped as read-only in logical mapping. This is
done as follows. (1) We break down the logical mapping from
section granularity (2MB) to page granularity (4K), so that we
can enforce protection at page-level. (2) All physical pages
used for initial page tables (i.e., logical mapping, identical
mapping and shadow address space) are all allocated from
a dedicated area in the .rodata section. This is possible
because the physical memory for most mobile devices cannot be
extended. (3) After kernel initialization, we make all initial page
tables as read-only in the logical mapping. (4) We enforce that
physical pages used for these critical page tables can never be
remapped, nor can their mapping (including access permissions)
be modified. This is possible because kernel is always loaded
at the beginning of the physical memory according to the
ELF section order, so physical pages used for these critical
data will have their frame number smaller than the end of the
.rodata section. (5) Any memory page allocated by the MMU
management code is immediately marked as read-only after
receiving it from the page allocator.

2) Code Integrity: Enforcing kernel code integrity is es-
sential for enforcing DFI; otherwise attackers can disable our
protection by either removing our instrumentations or injecting
their own code. We achieve this goal by enforcing two page
table invariants. First, similar to page tables, we enforce that
the kernel code (.text) section is always mapped as read-
only. Second, we enforce that except for the .text section, no
memory can be executable with kernel privilege, i.e., always
has PXN (privilege execution never) bit [7] set.

9

3) Dedicated Entries and Exits: Enforcing dedicated entries
and exits of MMU management code is trivial, as KENALI
protects all code pointers, i.e., its capability of defeating control
flow hijacking attacks is equivalent to CPI [36], which is
equivalent to fine-grained CFI [1].

C. Shadow Objects

Shadow object support includes three parts: (1) modifica-
tions to the SLUB allocator [37], (2) shadowing global objects,
and (3) analysis and instrumentation to utilize the above runtime
support.

1) SLUB Allocator: In our target kernel, most distinguishing
regions are allocated from the SLUB allocator. There are two
general types of slabs, i.e., named ones and unnamed ones.
Named slabs are usually dedicated to a single data structure,
if not merged, while the unnamed ones are for kmalloc. Our
implementation for shadow objects follows the same design
philosophy: we make read access as efficient as possible at the
expense of increasing the cost for write operations. Specifically,
when SLUB allocates page(s) for a new slab, we allocate a
shadow slab of the same size and map it as read-only at a
fixed offset (4GB) from the original slab. By doing so, shadow
objects can be statically located by adding this fixed offset.
Similar to kmemcheck, we added one more field in the page
structure to record the PFN of the corresponding shadow page.
Writing to shadow objects requires an additional operation:
given a pointer to a shadow object, we (1) subtract the fixed
offset to locate the page for its corresponding normal object;
(2) retrieve the page structure of the normal object and find
the PFN for its shadow page; and (3) calculate the VA for the
shadow object in the shadow address space, performs a context
switch, and write to the VA.

Because recent Linux kernel merges slabs with similar
allocation size and compatible flags, we also added one
additional flag for kmem_cache_create to prevent slabs used for
distinguishing regions from merging with other slabs. Finally,
since kmem_caches for kmalloc are created during initialization,
we modified this procedure to create additional caches for
distinguishing regions allocated through kmalloc.

2) Global Objects: While most distinguishing regions are
dynamically allocated, some of them are statically allocated in
the form of global objects, such as init_task. Shadow objects
for global objects are allocated during kernel initialization. In
particular, we allocate shadow memory for the entire .data
section, copy all the contents to populate the shadow memory
and then map it in the same way as described above, so that
we can use a uniformed procedure to access both heap and
global objects.

3) Analysis and Instrumentation: Since distinguishing re-
gions contain thousands of data structures, we use automated
instrumentation to instruct the kernel to allocate and access
shadow objects. Specifically, we first identify all allocation sites
for objects in distinguishing regions and modify the allocation
flag. If the object is directly allocated via kmem_cache_alloc,
we will also locate the corresponding kmem_cache_create call
and modify the creation flag. Next, we identify all pointer
arithmetic operations for accessing distinguishing regions and
modify them to access the shadow objects (for both read
and write access). Finally, we identify all write accesses

to distinguishing regions, including memcpy and memset, and
modify them to invoke our atomic operations instead. Our
analysis and instrumentation do not automatically handle
inline-assembly; fortunately inline-assembly is rare for the
AArch64 kernel. There are only 299 unique assembly code
snippets, most of which are for accessing system registers,
performance counters, and atomic variables. Besides, only a
few distinguishing regions are accessed by inlined-assembly,
so we handle them manually in a case-by-case manner.

D. Kernel Stack Randomization

Since we use virtual address space for data-flow isolation,
performing a context switch for every stack write is not
feasible. Thus, we used a randomization-based approach to
protect the stack. However, all randomization-based approaches
must face two major threats: lack of entropy and information
disclosure [26]. We address the entropy problem by mapping
kernel stack to a unused VA above the logical map (top 256GB).
Because kernel stacks are small (16KB), we have around 24-bit2
of entropy available.

We contain the risk of information leak as follows. First,
when performing safe stack analysis, we mark functions like
copy_to_user as unsafe, so as to prevent stack addresses from
leaking to user space. The safe stack also eliminates stack
address leaked to kernel heap, so even with the capability of
arbitrary memory read, attackers would not be able to pinpoint
the location of the stack. As a result, there are a few special
places that can be used to locate the stack, such as the stack
pointer in the task_struct and the page table. To handle the
formal case, we store the real stack pointer in a redirection
table and replace the original pointer with an index into the
table. To protect this table, we map it as inaccessible under
normal context. Similarly, to prevent attackers from traversing
page tables through arbitrary memory read, page tables for the
shadow stacks (i.e., top 256GB) are also mapped as inaccessible
under normal context. Accessing these protected tables is similar
to writing distinguishing regions, which disables interrupt,
performs a context switch, finishes the operation, and restores
the context and interrupt. Please note that because we un-map
memory pages used for kernel stack from their original VA in
logical mapping, attackers can acquire the PFN of the memory
by checking un-mapped page table entries. However, this does
not reveal the randomized VA of the re-mapped stack and thus
cannot be used to launch attacks. Finally, because AArch64
TLB does not hold a TLB entry on both translation error and
access flag error [7], TLB-based side channel attacks [29] are
also not feasible.

VI. EVALUATION

To evaluate our prototype, we designed and performed
experiments in order to answer the following questions:

• How precise is the region-inference algorithm INFERDISTS
(§VI-B)?
• How effective is our protection mechanism, PROTECT-

DISTS, in blocking unauthorized attempts to access dis-
tinguishing regions through memory corruption (§VI-C)?

• How much overhead is incurred by our protection mecha-
nism (§VI-D)?

238-bit (256GB) for unused space above kernel, minus 14-bit size.

10

A. Experimental setup

We use Google Nexus 9 as our testing device, which embeds
a duo-core ARMv8 SoC and 2GB memory. We retrieved the
kernel source code from the Android Open Source Project’s
repository (flounder branch, commit lollipop-release), and
applied patches from the LLVMLinux project [61] to make
it compatible with LLVM toolchain (r226004). Besides these
patches, we modified 64 files and around 1900 LoC of the
kernel.

All of our analysis passes are based on the iterative
framework from KINT [64], with our own call graph and
taint analysis. We found this framework to be more efficient
than processing a single linked IR. Our point-to analysis is
based on [19], which we extended to be context-sensitive with
the technique proposed in [13], and ported to the iterative
framework. The total LoC for analysis, excluding changes to
the point-to analysis, is around 4400. And our instrumentation
pass includes around 500 LoC.

B. Distinguishing Regions Discovery

1) Control data. For the Nexus 9 kernel, our analysis identified
6192 code pointers. Among them, 991 are function arguments
and 11 are return values. With safe stack protection, these
pointers do not require additional instrumentation. For the rest
of the code pointers, 1490 are global variables and 3699 are
fields over 783 data structures.

2) Non-Control data. The error codes we used were EPERM,
EACCES, and EROFS. Overall, our analysis identified 526 func-
tions as capable of returning permission-related errors; 1077
function arguments, 279 global variables and 1731 data fields
over 855 data structures as security-critical.

Next, we measure the accuracy of our analysis. For
measuring false positives, we manually verified if the reported
data regions are actually involved in the access control
decision. Among the 1731 data fields, our manual verification
identified 491 fields over 221 data structures as not sensi-
tive, so the empirical false positive rate is about 28.37%.
However, most of the false positives (430 data fields over
196 data structures) are introduced by one single check in
function dbg_set_powergate, which invokes a generic power
management function rpm_resume; this generic function in
turn, invokes power management functions from different
drivers through callback function pointers. Since our call graph
analysis is context-insensitive, this resulted in including many
power management related data structures. If we blacklist this
particular check, the false positive rate is only 3.52%.

For false negatives, since our analysis is sound on inferring
distinguishing regions, there should be no false negatives.
However, because the effectiveness of our approach depends on
the correctness of our assumptions (see §VII), we still wanted
to check if all well-known sensitive data structures like the cred
structure are included. The manual verification showed that all
the well-known data structures like av_decision, cred, dentry,
file, iattr, inode, kernel_cap_struct, policydb, posix_acl,
rlimit, socket, super_block, task_struct, thread_info,
vfsmount, vm_area_struct were included. Because of page
limitations, we omit the detailed list of the discovered structures
in this paper and provide them as part of an extended technique

report. Here, we provide some high level statistic instead.
Figure 3 shows the categories of discovered data field according
to where they are used for access control3. The top 3 sources
of distinguishing regions are network (mainly introduced by
netfilter), file system, drivers and core kernel.

163

115

93

50
40 37 40

119

60

42 37
30 31 36

0

20

40

60

80

100

120

140

160

180

net fs drivers kernel security include other

Fields
Structs

Fig. 3: Data fields categorized by their usage. Note, the total number
of usage is larger than the total data fields, because some of the data
fields are used in multiple components.

3) Sensitive pointers. Combining both control and non-control
inference results, we have a total of 4906 data fields over 1316
data structures as the input for sensitive pointer inference.
This step further introduced 4002 fields over 1103 structures
as distinguishing regions. So, for the target kernel, KENALI
should protect 2419 structures, which is about 27.30% of all
kernel data structures (8861).

C. Security Evaluation

In this subsection, we first discuss the potential false
negatives introduced by point-to analysis; then we use concrete
attacks to show the effectiveness of our protection.

1) Theoretical limitation. Although our analysis is sound,
because the point-to analysis is not complete (which is a
typical problem for all defense mechanisms that rely on point-
to analysis, including CFI, DFI and WIT), we may allow write
operations that should never write to distinguishing regions
to overwrite those critical data. To reduce the potential false
negatives introduced by point-to analysis, we try to improve
its precision by making the analysis field-sensitive and context-
sensitive. Here, we provide an empirical estimation of this
attack surface by measuring how many allocation sites can
a pointer points to. The results showed that the majority of
pointers (97%) can only point to one allocation site.

2) Real attacks. Since we could not find a real-world attack
against our target device, we back-ported CVE-2013-6282 to
our target kernel and attacked the kernel with techniques we
discussed in §II-B. As shown in Table I, KENALI was able to
stop all attacks.

TABLE I: Effectiveness of KENALI against different exploit tech-
niques discussed in §II-B. ret2usr attack does not work for our target
kernel because the AArch64 kernel has enabled PXN.

ret2usr cred SELinux RO Mount

Stock 3 7 7 7
KENALI 3 3 3 3

3We categorized them based on use because most of the structures are
defined in header files that are not well categorized.

11

D. Performance Evaluation

In this subsection, we evaluate the performance overhead
introduced by KENALI from the following perspectives: (1) in-
strumentation statistics; (2) overhead for our atomic operations
and core kernel services; (3) overhead for user-mode programs;
and (4) memory overhead incurred by shadow objects.

1) Instrumentation overhead. For instrumentation overhead,
we report the following numbers.

a) Reallocated stack objects: Recall that to implement safe
stack, we relocate unsafe stack objects to the heap. Since
heap allocation is more expensive, we want to measure how
many objects are relocated. Among the 155,663 functions
we analyzed, there are 26,945 stack allocations. Our inter-
procedural analysis marked 1813 allocations (6.73%) across
1676 functions as unsafe. Among these 1676 unsafe functions,
there are 170 unsafe stores (e.g., storing a stack pointer to the
heap) and 308 potential unsafe pointer arithmetics. The rest
of them are due to indirect calls where the target functions
cannot be statically determined (i.e., function pointers that are
never defined), so we conservatively treat them as unsafe. As
a comparison, the original safe stack analysis used in [36]
marked 11,528 allocations (42.78%) across 7285 functions as
unsafe.

b) Allocation sites: Data structures in the distinguishing
regions can be allocated in four general ways: as global
objects, from heap, on stack, or as an embedded object of
a larger structure. Our analysis handles all four cases, with
one limitation: our prototype implementation only handles
heap objects allocated from SLAB. Overall, for the 2419 input
structures, we were able to identify allocation sites for 2146
structures and cannot identify allocation sites for 385 structures.
Note that the total number is larger than the input because the
result also (recursively) included parent structures of embedded
structures. We manually analyzed the result and found that
some of those missing data structures like v4l2_ctrl_config
actually are never allocated in our target kernel configuration,
while others are allocated directly from page allocator, such as
f2fs_node, or casted from a disk block, such as ext4_inode.

c) Instrumented instructions: For the target kernel, our
analysis processed a total of 158,082 functions and 619,357
write operations. Among these write operations, 26,645 (4.30%)
were identified as may access distinguishing regions whose
allocation sites were successfully located and thus were
replaced with atomic write primitives. Within instrumented
write operations, only two operations were marked as unsafe and
need to be instrumented to guarantee write integrity. Besides,
we also instrumented 137 memcpy/memset calls.

d) Binary size In this experiment, we measure the binary
size increment introduced by KENALI. The result is shown
in Table II. As we can see, Clang-generated binaries are smaller
than GCC (version 4.9.x-google 20140827), and the binary size
increase is minor, so the instrumented binary is only slightly
larger than the stock GCC-compiled kernel.

TABLE II: Compressed kernel binary size increment.

Stock Clang KENALI Increase

Size (in bytes) 7,252,356 6,796,657 7,165,173 5.42%

2) Micro benchmarks. For micro benchmarks, we measured
two targets: (1) the overhead for a context switch and (2) the
overhead for core kernel services.

a) Context switch: In this experiment, we used the ARM
cycle count (PMCCNTR_EL0) to measured the latency for a round-
trip context switch under our protection scheme. For each round
of testing, we performed 1 million context switches, and the
final result is based on five rounds of testing. The result, with
little deviation, is around 1700 cycles. Unfortunately, lacking
access to hypervisor mode and secure world on the target
device, we cannot directly compare the expense for context
switching to hypervisor and the TrustZone on that device.
A recent study [50] showed that on an official Cortex-A53
processor, minimal round-trip cost for a guest-host switch is
around 1400 cycles, and around 3700 cycles for a non-secure-
secure switch (without cache and TLB flush).

b) LMBench: We used LMBench [44] to measure the
latency of various system calls. To measure how different
techniques affect these core system services, we consider
four configurations: (1) baseline: unmodified kernel compiled
with clang; (2) CI: kernel with only life-time kernel code
integrity protection (§V-B); (3) Stack: code integrity plus stack
protection (§V-D; and (4) KENALI: full DFI protection. The
result, averaged over 10 times, is shown in Table III. For
comparison, we also included numbers from Nested Kernel [24],
which also provides lifetime kernel code integrity; KCoFI [22],
which enforces CFI over the whole kernel; and SVA [23], which
guarantees full spatial memory safety for the whole kernel.
Please note that because these three systems are evaluated on
x86 processors and with different kernels, the comparison can
only be used as a rough estimation.

TABLE III: LMBench results. Overhead in times slower, the lower
the better. 1 Because the number for Nested Kernel (PerspicuOS)
was reported in a graph, the numbers here are estimations. 2 Because
the original SVA paper did not use LMBench, we used the number
reported in the KCoFI paper

CI Stack KENALI NK [24] KCoFI [22] SVA [23]

null syscall 0.99x 1.00x 1.00x ∼1.0x 2.42x 2.31x
open/close 0.97x 0.99x 2.76x ∼1.0x 2.47x 11.00x
select 1.00x 1.05x 1.42x - 1.56x 8.81x
signal install 1.34x 1.32x 1.30x ∼1.0x 2.14x 5.74x
signal catch 0.99x 1.11x 2.23x ∼1.0x 0.92x 5.34x
pipe 0.95x 1.02x 3.13x - 2.07x 13.10x
fork+exit 1.31x 1.40x 2.18x ∼2.9x 3.53x -
fork+execv 1.50x 1.55x 2.26x ∼2.5x 3.15x -
page fault 1.61x 1.69x 1.71x ∼1.0x 1.11x -
mmap 1.60x 1.66x 1.63x ∼2.5x 3.29x -

As we can see, for syscalls that involve distinguishing re-
gions manipulation, KENALI tends to have higher performance
overhead than KoCFI but lower than SVA. But for syscalls
that do not involve distinguishing regions manipulation, e.g.,
null syscall, KENALI has no observable performance overhead.
The overhead for enforcing lifetime code integrity is similar to
PerspicuOS.

3) Android benchmarks To measure the performance impact
on user-mode programs, we used four standard Android
benchmarks: AnTuTu, Geekbench, PCMark, and Vellamo. All
of these benchmarks simulate typical real-world scenarios,
including web browsing, video playback, photo editing, gaming,
etc. The configurations we used are similar to LMBench. The

12

result is shown in Figure 4. As we can see, with KENALI’s
protection, the slowdown for these user-mode benchmarks is
between 7% - 15%, which we think is acceptable.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sc
or
e	
 (
Re
la
tiv

e	

to
	
 B
as
el
in
e)

stock code	
 integrity CI+stack Kenali

Fig. 4: Benchmark results from four standard Android benchmarks.
Overhead in percentage of baseline performance, the higher the better.
We used unmodified kernel compiled with clang as the baseline.
Comparison configurations are (1) stock kernel, (2) kernel code
integrity, (3) code integrity plus stack protection, and (4) full protection.

4) Memory overhead To measure the memory overhead
introduced by KENALI (due to the use of shadow objects),
we modified the /proc/slabinfo interface to report slabs
with shadow objects. Based on this, we calculate how many
additional pages are allocated and their percentage to the whole
memory pages used by all slabs. We acquire this number at
two time points: (1) after fresh reboot and (2) after finishing
the AnTuTu benchmark. The result is shown in Table IV.

TABLE IV: Number of kmem_cache with shadow objects and the
number of pages used by shadow objects.

kmem_cache # pages MB % of total slab % of total memory

Reboot 85 9945 38.85 65.11% 1.90%
Bench 85 9907 38.70 59.79% 1.89%

VII. DISCUSSION

In this section, we discuss limitations of our current design
and implementation, insights we learned, and possible future
directions.

Cross-platform. Although we choose AArch64 for the
prototype, core techniques of KENALI are generic to most other
commodity platforms. Specifically, data-flow isolation can also
be implemented with the help of segmentation on the x86-32
architecture [67], WP-bit on the x86-64 architecture [24], and
access domain on the AArch32 architecture [68]. For shadow
objects, our current design is based on SLAB allocator, which
is used by many *nix kernels like Solaris and FreeBSD. In
theory, it can also be implemented on any memory pool/object
cache based allocator. The rest two techniques, WIT and safe
stack, are both platform-independent.

Better architecture support. A majority of KENALI overhead
can be eliminated by having better hardware support. For
example, with the application data integrity (ADI) feature from
the SPARC M7 processor [49], (1) there would be no context
switch for accessing distinguishing regions, and (2) all memory
overhead introduced by shadow objects can be eliminated. With
the kernel guard technology from Intel [30], enforcing lifetime

kernel code integrity can be less expensive. We are exploring
this direction as future work.

Reliability of assumptions. Our static analysis, INFERDISTS,
relies on two assumptions: (1) there is no logic bug in the
access control logic, and (2) there is no semantic error (i.e.,
failure of access control checks should always leads to returning
corresponding error codes). For most cases, these assumptions
usually hold, but may sometimes be violated [8, 18, 45].
However, we believe KENALI still makes valuable contributions,
as it is an automated technique that can provide a strong security
guarantee against memory-corruption-based exploits. In other
words, by blocking exploits against low-level vulnerabilities,
future research could focus on eliminating high-level bugs such
as logical and semantic bugs.

Use-after-free. Our current design of KENALI focuses on
spatial memory corruptions; thus it is still vulnerable to
temporal memory corruptions, such as use-after-free (UAF). For
example, if the cred of a thread is incorrectly freed and later
allocated to a root thread, the previous thread would acquire the
root privilege. However, KENALI still increases the difficulty
of exploiting UAF vulnerabilities: if the wrongly freed object
is not in distinguishing regions, exploiting such vulnerabilities
cannot be used to compromise distinguishing regions. At the
same time, many distinguishing regions data structures like
cred already utilize reference counter, which can mitigate UAF.
So we leave UAF mitigation as future work.

DMA protection. Since DMA can directly write to any
physical address, we must also prevent attackers from using
DMA to tamper distinguishing regions. Although we have
not implemented this feature in KENALI yet, many previous
works [55] have demonstrated how to leverage IOMMU
to achieve this goal. Since IOMMU is also available on
most commodity hardware, we expect no additional technical
challenges but only engineering efforts.

VIII. RELATED WORK

In this section, we compare KENALI with a variety of de-
fense mechanisms to defend memory-corruption-based attacks.

Kernel integrity. Early work on runtime kernel integrity
protection focused on code integrity, including boot time [6]
and after boot [9, 24, 55]. KENALI also needs to guarantee
kernel code integrity, and our approach is similar to [24]. After
rootkit became a major threat to the kernel, techniques have
also been proposed to detect malicious modifications to the
kernel [10, 13, 53, 54]. Compared to these works, KENALI has
two differences: (1) threat model: rootkit are code already with
kernel privilege, and their goal is to hide their existence; and
(2) soundness: most of these tools are not sound on identifying
all critical data (i.e., have false negatives), but our approach is
sound.

Software fault isolation. Because many memory corruption
vulnerabilities are found in third-party kernel drivers due to
relatively low code quality, many previous works focused on
confining the memory access capabilities of these untrusted
code with SFI [16, 25, 43, 63]. A major limitation of SFI, as
pointed out by [18], is that the core kernel may also contain
many bugs, which cannot be handled by SFI.

13

Data-flow integrity. DFI is a more general technique than
SFI, as it can mitigate memory corruptions from any module
of the target program/kernel. KENALI differs from previous
work on DFI enforcement [3, 15] in the following aspects.
First, KENALI is designed for OS kernels, while previous work
focused on user-mode programs; so KENALI requires additional
care for the kernel environment. Second, previous work protects
all program data, while KENALI aims at reducing the overhead
by only enforcing DFI over a small portion of data that are
critical to security invariants. Finally, as the effectiveness of DFI
also depends on the quality of the point-to analysis, KENALI
leveraged a more precise context-sensitive point-to analysis
tailored for the kernel [13].

Dynamic taint analysis. DTA is similar to DFI and has also
been used to prevent attacks [48]. The main difference is, in
DTA, data provenance is defined by high-level abstractions
like file, network, and syscall; but in DFI, data provenance is
defined by the instruction that writes to the memory. For this
reason, DTA is usually much more expensive than DFI, as it
also needs to track the data provenance/tag for computation
operations.

Memory safety. Besides DFI, another important defense
technique is runtime memory safety enforcement. Theoretically,
complete memory safety enforcement is more precise than DFI
because it is based on concrete runtime information, but its
performance overhead is also higher. For example, SVA [23]
imposes a 2.31x - 13x overhead on LMbench. Generally,
because the result generated by INFERDISTS is orthogonal
to the runtime enforcement techniques, it can also be combined
with memory safety. In this work, we chose DFI because we
found that most accesses to distinguishing regions are safe; so
DFI requires fewer checks and no metadata propagation for
pointer assignments and arithmetic. However, if the overhead
for memory safety enforcement becomes reasonable, e.g., with
hardware assistant like Intel MPX [31], we can also switch the
second layer protection from DFI to memory safety.

A recent memory safety work [36] demonstrated that, to
defeat a certain type of attack (control-flow hijacking), it is
sufficient to only protect a portion of data, thus reducing the
performance overhead. While KENALI leveraged a similar idea,
it addressed an important yet previously unsolved problem—
what data are essential to prevent privilege escalation attacks.

Control flow integrity. Because a majority of real-world
attacks are control-flow hijacking, CFI [1] has been a hot topic
in recent year and has been demonstrated to be extensible to
the kernel [22]. However, as discussed in §II-B, non-control-
data attacks are both feasible and capable enough for a full
privilege escalation attack. Furthermore, as CFI becomes more
practical, attackers are also likely to move to non-control-data
attacks. For these reasons, we believe KENALI makes valuable
contributions, as (1) it can prevent both control-data and non-
control-data attacks; and (2) compared to previous discussions
on non-control-data attacks [20, 28], it provides an automated
and systematic way to discover critical non-control-data.

IX. CONCLUSION

In this paper, we presented KENALI, a principled and
practical approach to defeat all memory-corruption-based kernel
privilege escalation attacks. By enforcing important kernel

security invariants instead of individual exploit techniques,
KENALI can fundamentally prevent all attacks. And by lever-
aging novel optimization techniques, KENALI only imposes
moderate performance overhead: our prototype implementation
for an Android device only causes 5-17% overhead for typical
user-mode benchmarks.

ACKNOWLEDGMENT

We thank Ahmad-Reza Sadeghi and the anonymous review-
ers for their helpful feedback, as well as our operations staff for
their proofreading efforts. This research was supported by the
NSF award CNS-1017265, CNS-0831300, CNS-1149051, and
DGE-1500084, by the ONR under grant No. N000140911042
and N000141512162, by the DHS under contract No. N66001-
12-C-0133, by the United States Air Force under contract No.
FA8650-10-C-7025, by the DARPA Transparent Computing
program under contract No. DARPA-15-15-TC-FP-006, by
the ETRI MSIP/IITP[B0101-15-0644]. Any opinions, findings,
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of the NSF, ONR, DHS, United States Air Force or DARPA.

REFERENCES

[1] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti, “Control-flow integrity,”
in ACM Conference on Computer and Communications Security (CCS),
2005.

[2] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques,
and Tools. Addison-Wesley, 1986.

[3] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro, “Preventing
memory error exploits with WIT,” in IEEE Symposium on Security and
Privacy (Oakland), 2008.

[4] J. P. Anderson, “Computer security technology planning study,” U.S.
Air Force Electronic Systems Division, Deputy for Command and
Management Systems, HQ Electronic Systems Division (AFSC), Tech.
Rep. ESD-TR-73-51, 1972.

[5] Android Open Source Project, “Verified boot,” https://source.android.com/
devices/tech/security/verifiedboot/index.html.

[6] W. Arbaugh, D. J. Farber, J. M. Smith et al., “A secure and reliable
bootstrap architecture,” in IEEE Symposium on Security and Privacy
(Oakland), 1997.

[7] ARM Limited, ARM Architecture Reference Manual. ARMv8, for ARMv8-
A architecture profile. ARM Limited, 2015.

[8] K. Ashcraft and D. R. Engler, “Using programmer-written compiler
extensions to catch security holes,” in IEEE Symposium on Security and
Privacy (Oakland), 2002.

[9] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh, J. Ma,
and W. Shen, “Hypervision across worlds: Real-time kernel protection
from the arm trustzone secure world,” in ACM Conference on Computer
and Communications Security (CCS), 2014.

[10] A. Baliga, V. Ganapathy, and L. Iftode, “Automatic inference and
enforcement of kernel data structure invariants,” in Annual Computer
Security Applications Conference (ACSAC), 2008.

[11] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey,
B. Ondrusek, S. K. Rajamani, and A. Ustuner, “Thorough static analysis
of device drivers,” in ACM EuroSys Conference, 2006, pp. 73–85.

[12] J. Bonwick and B. Moore, “Zfs: The last word in file systems,” 2007.
[13] M. Carbone, W. Cui, L. Lu, W. Lee, M. Peinado, and X. Jiang,

“Mapping kernel objects to enable systematic integrity checking,” in
ACM Conference on Computer and Communications Security (CCS),
2009.

[14] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross, “Control-
flow bending: On the effectiveness of control-flow integrity,” in Usenix
Security Symposium, 2015.

[15] M. Castro, M. Costa, and T. Harris, “Securing software by enforcing
data-flow integrity,” in Symposium on Operating Systems Design and
Implementation (OSDI), 2006.

[16] M. Castro, M. Costa, J.-P. Martin, M. Peinado, P. Akritidis, A. Donnelly,
P. Barham, and R. Black, “Fast byte-granularity software fault isolation,”
in ACM Symposium on Operating Systems Principles (SOSP), 2009.

14

https://source.android.com/devices/tech/security/verifiedboot/index.html
https://source.android.com/devices/tech/security/verifiedboot/index.html

[17] H. Chen and D. Wagner, “MOPS: an infrastructure for examining
security properties of software,” in ACM Conference on Computer and
Communications Security (CCS), 2002.

[18] H. Chen, Y. Mao, X. Wang, D. Zhou, N. Zeldovich, and M. F. Kaashoek,
“Linux kernel vulnerabilities: State-of-the-art defenses and open problems,”
in Asia-Pacific Workshop on Systems (APSys), 2011.

[19] J. Chen, “Andersen’s inclusion-based pointer analysis re-implementation
in llvm,” https://github.com/grievejia/andersen/tree/field-sens.

[20] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-control-data
attacks are realistic threats,” in Usenix Security Symposium, 2005.

[21] M. Conti, S. Crane, L. Davi, M. Franz, P. Larsen, C. Liebchen, M. Negro,
M. Qunaibit, and A. R. Sadeghi, “Losing control: On the effectiveness
of control-flow integrity under stack attacks,” in ACM Conference on
Computer and Communications Security (CCS), 2015.

[22] J. Criswell, N. Dautenhahn, and V. Adve, “KCoFI: Complete control-flow
integrity for commodity operating system kernels,” in IEEE Symposium
on Security and Privacy (Oakland), 2014.

[23] J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve, “Secure virtual
architecture: A safe execution environment for commodity operating
systems,” in ACM Symposium on Operating Systems Principles (SOSP),
2007.

[24] N. Dautenhahn, T. Kasampalis, W. Dietz, J. Criswell, and V. Adve,
“Nested kernel: An operating system architecture for intra-kernel privilege
separation,” in International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2015.

[25] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula, “Xfi:
Software guards for system address spaces,” in Symposium on Operating
Systems Design and Implementation (OSDI), 2006.

[26] I. Evans, S. Fingeret, J. Gonzalez, U. Otgonbaatar, T. Tang, H. Shrobe,
S. Sidiroglou-Douskos, M. Rinard, and H. Okhravi, “Missing the Point(er):
On the Effectiveness of Code Pointer Integrity,” in IEEE Symposium on
Security and Privacy (Oakland), 2015.

[27] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi,
and S. Sidiroglou-Douskos, “Control jujutsu: On the weaknesses of fine-
grained control flow integrity,” in ACM Conference on Computer and
Communications Security (CCS), 2015.

[28] H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang, “Automatic
generation of data-oriented exploits,” in Usenix Security Symposium,
2015.

[29] R. Hund, C. Willems, and T. Holz, “Practical Timing Side Channel
Attacks Against Kernel Space ASLR,” in IEEE Symposium on Security
and Privacy (Oakland), 2013.

[30] Intel, “Intel kernel-guard technology,” https://01.org/intel-kgt.
[31] ——, “Introduction to intel memory protection extensions,”

https://software.intel.com/en-us/articles/introduction-to-intel-memory-
protection-extensions.

[32] R. Johnson and D. Wagner, “Finding user/kernel pointer bugs with type
inference.” in Usenix Security Symposium, 2004.

[33] V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis, “kguard:
Lightweight kernel protection against return-to-user attacks,” in Usenix
Security Symposium, 2012.

[34] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai,
and O. Mutlu, “Flipping bits in memory without accessing them: An
experimental study of dram disturbance errors,” in Annual International
Symposium on Computer Architecture (ISCA), 2014.

[35] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish et al., “sel4: Formal
verification of an os kernel,” in ACM Symposium on Operating Systems
Principles (SOSP), 2009.

[36] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song,
“Code-pointer integrity,” in Symposium on Operating Systems Design and
Implementation (OSDI), 2014.

[37] C. Lameter, “Slub: The unqueued slab allocator,” http://lwn.net/Articles/
223411/, 2007.

[38] D. Larochelle and D. Evans, “Statically detecting likely buffer overflow
vulnerabilities.” in Usenix Security Symposium, 2001.

[39] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram, “Defeating return-
oriented rootkits with return-less kernels,” in European Symposium on
Research in Computer Security (ESORICS), 2010.

[40] J. Li, M. N. Krohn, D. Mazières, and D. Shasha, “Secure untrusted data
repository (sundr),” in Symposium on Operating Systems Design and
Implementation (OSDI), 2004.

[41] Z. Lin, J. Rhee, X. Zhang, D. Xu, and X. Jiang, “Siggraph: Brute force
scanning of kernel data structure instances using graph-based signatures.”
in Network and Distributed System Security Symposium (NDSS), 2011.

[42] LLVM, “The LLVM compiler infrastructure project,” llvm.org, 2015.
[43] Y. Mao, H. Chen, D. Zhou, X. Wang, N. Zeldovich, and M. F. Kaashoek,

“Software fault isolation with api integrity and multi-principal modules,”
in ACM Symposium on Operating Systems Principles (SOSP), 2011.

[44] L. W. McVoy, C. Staelin et al., “lmbench: Portable tools for performance
analysis.” in ATC Annual Technical Conference (ATC), 1996.

[45] C. Min, S. Kashyap, B. Lee, C. Song, and T. Kim, “Cross-checking
semantic correctness: The case of finding file system bugs,” in ACM
Symposium on Operating Systems Principles (SOSP), 2015.

[46] MITRE, “Cve-2013-6282,” https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2013-6282, 2013.

[47] G. C. Necula and P. Lee, “Safe kernel extensions without run-time check-
ing,” in Symposium on Operating Systems Design and Implementation
(OSDI), 1996.

[48] J. Newsome and D. Song, “Dynamic taint analysis for automatic detection,
analysis, and signature generation of exploits on commodity software,”
in Network and Distributed System Security Symposium (NDSS), 2005.

[49] Oracle, “Introduction to sparc m7 and application data integrity (adi),”
https://swisdev.oracle.com/_files/What-Is-ADI.html.

[50] M. Paolino, “ARM TrustZone and KVM Coexistence with RTOS For
Automotive,” in ALS Japan, 2015.

[51] PAX, “Homepage of the pax team,” https://pax.grsecurity.net/, 2013.
[52] B. D. Payne, M. Carbone, M. Sharif, and W. Lee, “Lares: An architecture

for secure active monitoring using virtualization,” in IEEE Symposium
on Security and Privacy (Oakland), 2008.

[53] N. L. Petroni Jr, T. Fraser, A. Walters, and W. A. Arbaugh, “An archi-
tecture for specification-based detection of semantic integrity violations
in kernel dynamic data.” in Usenix Security Symposium, 2006.

[54] N. L. Petroni Jr and M. Hicks, “Automated detection of persistent
kernel control-flow attacks,” in ACM Conference on Computer and
Communications Security (CCS), 2007.

[55] A. Seshadri, M. Luk, N. Qu, and A. Perrig, “Secvisor: A tiny hypervisor
to provide lifetime kernel code integrity for commodity oses,” in ACM
Symposium on Operating Systems Principles (SOSP), 2007.

[56] M. I. Sharif, W. Lee, W. Cui, and A. Lanzi, “Secure in-vm monitoring
using hardware virtualization,” in ACM Conference on Computer and
Communications Security (CCS), 2009.

[57] S. Smalley and R. Craig, “Security enhanced (se) android: Bringing
flexible mac to android.” in Network and Distributed System Security
Symposium (NDSS), 2013.

[58] A. Srivastava and J. Giffin, “Efficient protection of kernel data structures
via object partitioning,” in Annual Computer Security Applications
Conference (ACSAC), 2012.

[59] “System error code,” https://msdn.microsoft.com/en-us/library/windows/
desktop/ms681382%28v=vs.85%29.aspx, 2001.

[60] The IEEE and The Open Group, errno.h - system error numbers. The
Open Group, 2013, the Open Group Base Specifications Issue 7, IEEE Std
1003.1, 2013 Edition, http://pubs.opengroup.org/onlinepubs/9699919799/
functions/rename.html.

[61] The Linux Foundation, “Llvmlinux,” http://llvm.linuxfoundation.org/
index.php/Main_Page.

[62] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken, “A first step towards
automated detection of buffer overrun vulnerabilities.” in Network and
Distributed System Security Symposium (NDSS), 2000.

[63] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient
software-based fault isolation,” in ACM Symposium on Operating Systems
Principles (SOSP), 1994.

[64] X. Wang, H. Chen, Z. Jia, N. Zeldovich, and M. F. Kaashoek, “Improving
integer security for systems with kint.” in Symposium on Operating
Systems Design and Implementation (OSDI), 2012.

[65] Z. Wang and X. Jiang, “Hypersafe: A lightweight approach to provide
lifetime hypervisor control-flow integrity,” in IEEE Symposium on Security
and Privacy (Oakland), 2010.

[66] J. Yang, T. Kremenek, Y. Xie, and D. Engler, “Meca: an extensible,
expressive system and language for statically checking security properties,”
in ACM Conference on Computer and Communications Security (CCS),
2003.

[67] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka,
N. Narula, and N. Fullagar, “Native client: A sandbox for portable,
untrusted x86 native code,” in IEEE Symposium on Security and Privacy
(Oakland), 2009.

[68] Y. Zhou, X. Wang, Y. Chen, and Z. Wang, “Armlock: Hardware-
based fault isolation for arm,” in ACM Conference on Computer and
Communications Security (CCS), 2014.

15

https://github.com/grievejia/andersen/tree/field-sens
https://01.org/intel-kgt
https://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
http://lwn.net/Articles/223411/
http://lwn.net/Articles/223411/
llvm.org
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-6282
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-6282
https://swisdev.oracle.com/_files/What-Is-ADI.html
https://pax.grsecurity.net/
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681382%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681382%28v=vs.85%29.aspx
http://pubs.opengroup.org/onlinepubs/9699919799/functions/rename.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/rename.html
http://llvm.linuxfoundation.org/index.php/Main_Page
http://llvm.linuxfoundation.org/index.php/Main_Page

	Introduction
	Problem Scope
	Threat Model and Assumptions
	Motivating Examples

	Technical Approach
	Overview
	Inferring Distinguishing Regions
	Control-Data
	Non-Control-Data
	Sensitive Pointers

	Protecting Distinguishing Regions
	Data-Flow Isolation
	Write Integrity Test
	Shadow Objects
	Safe Stack

	Formal Model
	Problem Definition
	A language of monitors
	Monitor consistency
	The consistent-refinement problem

	Inferring distinguishing regions
	Problem formulation
	Inferring distinguishing sites

	Protecting distinguishing regions
	The region-protection problem
	Background: writes-to analysis
	A region-protecting colorer

	Protected monitors as refinements

	A Prototype for Android
	Data-flow Isolation
	AArch64 VMSA
	Shadow Address Space
	Atomic Primitive Operations

	MMU Integrity
	MMU Isolation
	Code Integrity
	Dedicated Entries and Exits

	Shadow Objects
	SLUB Allocator
	Global Objects
	Analysis and Instrumentation

	Kernel Stack Randomization

	Evaluation
	Experimental setup
	Distinguishing Regions Discovery
	Security Evaluation
	Performance Evaluation

	Discussion
	Related work
	Conclusion
	Acknowledgment

