
Protecting Secret Data from Insider Attacks

David Dagon, Wenke Lee, and Richard Lipton

Georgia Institute of Technology
{dagon, wenke, rjl }@cc.gatech.edu

Abstract. We consider defenses against confidentiality and integrity attacks on
data following break-ins, or so-called intrusion resistant storage technologies. We
investigate the problem of protecting secret data, assuming an attacker is inside a
target network or has compromised a system.

We give a definition of the problem area, and propose a solution, VAST, that
uses large, structured files to improve the secure storage of valuable or secret
data. Each secret has its multiple shares randomly distributed in an extremely
large file. Random decoy shares and the lack of usable identification information
prevent selective copying or analysis of the file. No single part of the file yields
useful information in isolation from the rest. The file’s size and structure there-
fore present an enormous additional hurdle to attackers attempting to transfer,
steal or analyze the data. The system also has the remarkable property of healing
itself after malicious corruption, thereby preserving both the confidentiality and
integrity of the data.

1 Introduction

Security technologies have traditionally focused on perimeter defenses. By itself, this
approach creates what has been called a lobster-model of security, or “a sort of crunchy
shell around a soft, chewy center” [Che90]. If an attacker manages to get into the net-
work, it becomes very difficult to detect or prevent further security compromises.

This has prompted the development of secure storage techniques that resist against
successful attacks. This paper studies the problem of protecting secret data under the
assumption that an attacker has already broken through the network perimeter (or is an
“insider”). We give a formal definition of the problem, and present one solution called
VAST. The key idea is to distribute secret data in an extremely large storage system
without exploitable identification information. Our VAST storage system is orthogonal
and complimentary to existing data protection techniques, such as encryption, in that it
makes attacks much more difficult to succeed.

In this paper, we describe the design rationales, data structures and algorithms. We
also describe an implementation of such a system, to demonstrate acceptable normal
use. Specifically, we make the following contributions:

Definition of Secure Storage Problem.We formally describe the problem of secure
storage of secrets in Section3.1. We describe an abstract data type that is a large stor-
age table composed of records. Operations include initialization, insertion and deletion.
We also describe security properties that the table and operations must guarantee. This
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general description of the problem formalizes intrusion resistant systems, and encour-
ages further research into this general problem area.

Storage Scheme for Secret Data.Based on the abstract data type, we propose the
VAST storage system, which uses extremely large (e.g., terabyte-sized) files to store
secret information. In VAST, a secret is broken into shares distributed over a large file,
so that no single portion of the file holds recoverable information.

2 Related Work

VAST of course fits into the larger field of fault-tolerant systems generally, and
intrusion-tolerant systems specifically. There has been a considerable amount of work
on tolerant and dependable file storage. Many works have used secret sharing as part of
a resilient data storage system [WBS+00,LAV01]. Of particular relevance is [FDP91,
FDR92], and Rabin’s work in [Rab89], which all used secret sharing as an information
dispersal technique for security and redundancy. Our work is in a similar vein, but seeks
to leverage tradeoffs between disk I/O speeds and memory onlocal file stores, without
the need to distribute shares among hosts.

Many other intrusion resistant systems have usedfragmentation-and-scattering, a
technique similar to VAST’s hashing store of secret shares. In [DFF+88], the SAT-
URNE research project describe the fragmentation-and-scattering scheme. Stored data
was cut into insignificant fragments, and replicated over a network. The distribution of
the fragments obliged attackers to compromise numerous resources before they could
read, modify or destroy sensitive data. Instead of distributing resources over a network,
VAST keeps all fragmented data in a single file, albeit usually spread over several drives.

The tremendous time difference between memory and drive I/O has motivated work
in complexity analysis [AKL93,AV87]. The general goal of these works is to describe
a lower bound on algorithms and demonstrate a minimal number of I/O operations.
VAST works in the opposite direction, and seeks to maximize the number of required
I/O operations to slow attackers.

Components of VAST were inspired by other results. For example, the large table in
VAST is similar in principle to the solution in [Mau92], where a short (weak) key and
a long plaintext were kept secure by using a publicly-accessible string of random bits
whose length greatly exceeded that of the plain text. In [CFIJ99], the authors created a
very similar model for memory storage, and generally described how to create a storage
system that can forget any secret. Their solution assumed the existence of a small and
fixed storage area that the adversary cannot read, which differs from VAST’s large,
unfixed, and readable storage tables.

Other areas of research have used techniques similar to VAST. VAST’s distribution
of shares over a table has a superficial resemblance to data hiding [KP00]. VAST’s
ability to recover and heal corrupted messages also resembles Byzantine storage sys-
tems [MR98], or even the larger field of error correction codes. VAST combines existing
approaches in a new and interesting way.
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3 Designing Large Files for Valuable Data

Below, we describe an abstract secure storage problem, and suggest relevant design
considerations for any solution. We then propose the VAST storage system, and detail
its operation.

3.1 Secure Storage Problem Statement

For this paper, we address the following specific scenario: Assuming an attacker has
penetrated a storage system, what reasonable measures help prevent the compromise of
stored secret data through brute-force analysis, such as key cracking, dictionary pass-
word guessing, and similar attacks?

We formally describe the secure storage of data in large tables as follows. A large
tableT has parameters(n, r,m, d,K). The table is used to storen records ofr bits. The
table itself ism bits in size, wherem ≥ nr, and usuallym À nr. The valued deter-
mines a fraction of the table,0 < d ≤ 1. The valueK, described below, is a threshold
used to measure security properties. The table supports the following operations.

1. Initialize. An init() function iteratively initializes each of then records inT .
2. Add. An add() operation inserts data into the table.
3. Delete.A delete() operation removes entries from the table.
4. Find. A find() operation retrieves information from the table.

The security property of the table is the following statement. Suppose we initialize
the table and then perform a series of insertion operations. Next, suppose we use only
dm bits from the table. Given a valuex, and using onlydm bits, the probability one can
can correctly computefind(x) is at most2−K . In other words, ifdm bits are stolen
or analyzed, there’s only a small chance thatx can be recovered from the exposed
portion of the table. We can also state a stronger security property for the table, so that
it also provides semantic security. Again assuming onlydm bits are used, the semantic
security property holds that one cannot computefind(x) correctly, and further cannot
obtain one bit ofx with any advantage over12 + 2−K .

It is not obvious that one can create a table with these properties. Reasoning about
the problem points to one possible solution. To start, we know that our overall goal is
to increaseK, which minimizes the probability of a successful attack. One strategy to
accomplish this is to encrypt the data,x, inserted into the table, since this makes linear
scans of the table much more difficult, and forces the attackers to perform brute-force
attacks on the encryption scheme. A second strategy is to not only increasem, but also
to distributex in such a way thatd ≈ 1 before recoveringx becomes possible. In other
words, we should store data in a large table such that analyzing a smalld fraction of the
table cannot yieldx.

An additional, practical benefit derives from using a large table size,m. If the table
is large, andx is stored such thatd must be near 1, then in practical terms this means
analyzing the table’sm bits will require enormous resources. We know, for example,
that I/O access is extremely slow compared to memory access [AKL93]. We therefore
should design our table with a goal opposite of Vitter’s work minimizing I/O operations
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in algorithms [AV87]. Instead, we wish tomaximizethe I/O operations (and therefore,
the time) required for analysis.

The above discussion suggests making the table size large. One consequence is that
an attack will take more time to succeed. With I/O operationsseveralorders of magni-
tude slower than memory access [HP03], this means analysis will require repeated disk
access.

3.2 Design Considerations for Secure Data Storage Problems

In most attacks on data confidentiality and integrity, the attacker first needs to get hold
of the target data, usually by copying it offsite. In this attack set up stage, time is pro-
portional to the size of data. For example, if the attacker needs to transfer data on a
link with a capacity ofC data units per unit time, then the time it takes to transfer data
with sizeD will be T = D

C . If the target data is actually small in size, we better protect
the data by dispersing it in a large storage file without any “exploitable” identification
information. This will force the attacker to process the entire large storage to recover
the target information. If the table sizem is tera-scale, the time needed to steal the file
is potentially prohibitive.

In order to slow the attack, we need to force it to carry out more operations. For
attacks on confidentiality and integrity, a simple protection scheme is to fragment the
data and distribute the shares throughout the large file. Thus, for each attack (trial)
that involves locating shares and guessing (brute-force analyzing the data), instead of
spending timeT for one target, it now must spend timekT if k fragments are needed
to reconstruct the data.

3.3 The VAST Storage System

We now describe the design of our large file scheme, using a credit card database stor-
age system as a motivating example. User financial records are stored in a file, and
retrieved using keys, passwords or PINs that hash to appropriate table entries. (Without
significant modification, the system could be used in almost any password-based au-
thentication system.) A readable metadata index file stores the relevant information for
each user, including user name,u, and saltss1, s2, . . ., sk, each a random number. The
metadata identification (or user identity) file does not need to be read-protected because
it contains no secret. (In practice, of course, one might elect to restrict access to this file
as well; however, our analysis presumes it has been accessed by an attacker.)

The data storage file is a very large tableT with m entries in which multiple shares
of data are randomly distributed. There are no empty entries because the table is initially
filled with random bit strings that look like valid shares.

We next study the data structures and algorithms for the large table file. The main
design goals are:

Functional. From the functionality point of view, the table must store financial infor-
mation reliably so that the data is retrievable only when a proper key is presented. This
corresponds to theadd() andfind() operations noted in section3.1.

Secure. From the data security point of view, the design objective is to make it very
difficult and slow for an attacker to steal the large information file and extract the infor-
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mation using brute-force key guessing or dictionary attacks. That is, it costs the attacker
maximally (in time, or other resources) with each guess. This corresponds to the secu-
rity principle noted in section3.1.

Below, we discuss how to achieve these goals.

Storing Unguessable Shares of Random.In order to force the attacker to read all
shares with each guess, VAST is based on secret sharing [Sha70]. Financial data for
each user is stored under their unique name,u, in a large table. The data is accessed
through the use of a key,key, andk random salts,s1, s2, . . . , sk.

To add a user and data into the system (theadd() operation in Section3.1), we first
take the user’s financial information (e.g., a credit card number)M , and add any needed
padding to match the length ofX2, a large random number selected for each insertion
of M . We will useX1 to refer to the padded informationM . Together,X1 andX2

may be considered as a message and Vernam’s one-time pad [Bis03]. As will be seen
below, portions of this cipher scheme are stored in the table. We selected a one-time
pad because its provable security was attractive, and helps partially address problems
found in hash-storage schemes, such as dictionary attacks on weak passwords. The use
of the pad also avoids problems associated with storing message-derived hashes in the
metadata table, e.g., theft of hashes, and offline guessing attacks against messages with
similar structures, such as credit cards. (We discuss an attack model below.)

X1 andX2 are of equal length, on the order of 128 to 160 bits or more. The numbers
are XOR’d together to produce a third value,X = X1 ⊕X2. The random numberX2

is then appended to the user’s entry in the identity file, along with user nameu and a set
of salts,{s1, . . . , sk′ , . . . , sk}, each a unique random number.

Instead of storing the padded messageX1 in the table, we first encrypt it with a
symmetric encryption operation,Ekey(X1). (Any symmetric encryption system can be
used.) In addition to improving security, the encryption step also makes it easier to
generate convincing initial (random) values for unused portions of the table.

Then, applying Shamir’s secret sharing scheme [Sha70], two random polynomials
are constructed to secret shareEkey(X1) (the encrypted message) andX (the cipher
text):

f1(x) = E(X1) +
∑k′−1

j=1 ajx
j (mod q), f2(x) = X +

∑k′−1
j=1 bjx

j (mod q) (1)

We selectq, a large prime number (greater thank, X1 andX2), and store it in the
metadata file. The coefficientsaj (and likewisebj) j = 1, 1, . . . , k′ − 1, are random,
independent numbers in the range of[0, q − 1]. We usek′ ≤ k to provide collision tol-
erance becausek′ shares are sufficient to reconstruct the secret. Thus, fork shares, the
threshold ofk′ shares must be present to recover the secret. For eachi = 1, 2, . . . , k, we
store bothf1(i) andf2(i) in the same table entry atH(key||si) mod m. These shares
look just like any other random numbers in the range[0, q − 1]. Therefore, at initial-
ization (theinit() operation in Section3.1), the table is filled with random numbers in
the range of[0, q − 1]. After the shares are inserted in the table, the coefficients of the
two polynomials (Equations (1)) are discarded. Figure1 provides an overview of the
process.
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Fig. 1. Overview of VAST SystemInformation or a message,X1, is⊕-combined with a random
numberX2 to formX. The random numberX2 is stored in a metadata table under the appropriate
user’s entry, along with random salts,s1, s2, . . . , sk, unique for each user. The valuesEkey(X1)
andX are Shamir-shared to derivek shares,f1 andf2. Eachf1(i) andf2(i), which are stored in
the large table, based on a hash of the key and salt, at table entryH(key||si)mod m

To retrieve information for a useru (thefind() operation in Section3.1), we interact
with the user to obtain the key, password or PIN, calledkey′, and look up the salts
in the metadata file. Then, we retrieve the sharesf ′1(i) and f ′2(i) in the table entry
H(key′||si) mod m, for eachi = 1, 2, . . . , k. Givenk′ shares, sayi = 1, 2, . . . , k′, the
polynomialf1 (and likewisef2) can be reconstructed using Lagrange interpolation:

f ′1(x) =
k′∑

i=1

f ′1(i)
∏

1≤j≤k′,j 6=i

x− j

i− j
(mod q) (2)

Thus,X ′
1 (and likewiseX ′) can be computed:

X ′
1 = f ′1(0) =

∑k′

i=1 cif
′
1(i) (mod q), where ci =

∏
1≤j≤k′,j 6=i

j
j−i

(3)

We then perform decryption,X ′
1 = E−1

key(Ekey(X ′
1)). If X ′

1 ⊕X ′ = X2 (the value
stored withu in the metadata file), then the key was valid, and the correct message
X1 was recovered. IfX ′

1 ⊕ X ′ 6= X2, this may be due to collisions (i.e., some shares
overwritten by the shares of another user), and anotherk′ shares can be used to compute
X ′

1 andX ′ as in Equation (3). In the worst case, one needs to try
(

k
k′

)
times before the

key is validated. However, since collisions are very rare, the probability of success (in
validating a valid key) with the firstk′ shares is very high.

Suppose an incorrect keykey′ is supplied. Thenk′ incorrect sharesf ′1(i) andf ′2(i),
i = 1, 2, . . . , k′ are read to constructX ′

1 andX ′. The chance ofX ′
1 ⊕ X ′ = X2,

and thus validating the incorrectkey′ , is very small,2−128 if X is a 128-bit random.
This is because for theX ′ value computed from the shares,X ′

1 must happen to be
exactlyX ′⊕X2, which in turn requires that one share, say thek′th share, forX ′

1, must

beX ⊕ X ′
2 −

∑k′−1
i=1 cif

′
1i (mod p), a 2−128 chance. Thus, VAST meets the security

property for storage tables stated in Section3.1.



22 D. Dagon, W. Lee, and R. Lipton

An attacker may attempt to search for the shadow keys inT , since every data el-
ement has at leastk′ shares in the table. But searching for the correctk′ elements in
m is difficult, on the order of

(
m
k

) ≥ (m
k )k, wherem is enormous. (Recall, the table

is tera-scale, often with240 or more entries, all initially random.) The attacker’s best
strategy is key guessing, since the search space is much smaller. Even if 8 character
keys are composed from 95 possible characters, it is easier to guess out of958 ≤ 256

combinations, compared, say, to
(
240

8

) ≥ 2296, for k = 8, m = 240. So, the attacker can
only perform key guessing.

Now consider an attacker attempting to guess the key of useru to retrieve the finan-
cial data,X1. If she can precompute the shares ofX1 andX, then for the guessed key
key’, she might just check the shares in one entry, sayH(key′||s1) mod m, (or up to
k− k′ entries) to learn thatkey’ is incorrect. However, we can show that this is not pos-
sible. First, although she can read the identification file and hence the randomX2, she
cannot figure out the values of messageX1 and cipher textX because encryption using
one-time pad offers perfect secrecy. Furthermore, the coefficients of the polynomials
in Equations (1) are random and are discarded. Therefore, there is no way the attacker
can precompute the shares. So, she has to read the shares from the table. If she reads
fewer thank′ shares, according to Equation (3), she will not be able to computeX ′

1 (and
likewiseX ′). And withoutX ′

1 andX ′, she cannot test ifX ′
1 ⊕ X2 = X ′ to know if

key’ is correct. Based on the above analysis, and the strengths of the basic cryptographic
primitives of one-time pad and secret sharing, we have the following claim:

Property 1. In order to retrieve a user’s information or just to learn that the key is
incorrect, at leastk′ table entries must be read.

When collisions occur, and enough of the salts still point to valid shares, the system
has detected some corruption of the table. In other words, some of the shares are invalid,
but enough are still present to recoverX1 under the Shamir secret sharing scheme. This
could be due to collisions as other data is added to the table, or because of malicious
corruption of the file. In either case, ifX1 has been retrieved using onlyk′ < k salts,
new random salts are generated, and written to the metadata file. The data is then re-
hashed and written to the table. This way, the table “heals” itself and corrects corruption
detected during reads. Thus, when data collides with other entries, we eventually detect
this problem, and relocate the shares. This movement may cause other collisions, but
the chance is small. Eventually a steady state is obtained, and no user’s shares collide
with shares of any other. Section4 discusses the reliability of this system, and the small
probability of collisions occurring.

In order to completely corrupt a secret stored in the table, at leastk− k′ + 1 entries
must be overwritten. The chance of this occurring with random writes is extremely
small, on the order ofk−k′+1

m , wherem is enormous. Section4 provides a complete
analysis of the reliability of the system. However, if any legitimate read access occurs
prior to allk−k′+1 collisions, the corruption will be detected and repaired. (Recall that
only k′ shares must be valid, sok − k′ corrupted shares can be detected and corrected
in the course of legitimate use.) This property allows us to assert the following claim:
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Property 2. Since reads from the table reveal any collisions, allowing for repair of the
data’s integrity, data is destroyed only ifk − k′ + 1 shares are corrupted between legit-
imate access attempts.

This is an important property for storage systems, since attackers unable to recover
data from the file may nonetheless maliciously write bad information, in order to corrupt
the file for normal use. (For example, they might randomly write zeros to the table.)
With a large tera-scale file, however, successfully deleting all information would take
an enormous number of writes, and may risk detection by other orthogonal detection
systems.

The size of the financial data,M , stored asX1 using the above scheme is of course
limited [CSGV81]. We’ve used credit card information as a motivating example. How-
ever, there are many ways we can extend our scheme to store arbitrarily large files. One
simple scheme is to treat each encrypted block of the whole encrypted message as an
M of useri. In other words, we could make as many users are there are blocks, so that
a largeM is distributed or chained over many users.

No doubt other variations are possible. One can be creative about using pointers,
indices, or set orders to store even large amounts of data. Therefore, while credit card
number storage provides a real-world motivation for our work, our scheme can be ex-
tended to provide more general support for a wide range of applications. Tera-scale
drives are now affordable, and we encourage others to examine how fragmentation-
and-scattering schemes can be improved with large data stores.

Table Tiers. We also briefly note a possible variation of VAST using table tiers to
efficiently use limited resources. While tera-scale drive storage is inexpensive, greater
reliability may be obtained by dividing a quantity of storage into separate independent
VAST tables.

Recall the important design goal of providingreliable storage for sensitive infor-
mation. As will be discussed in4.2, there is a small chance that collisions may occur
when inserting new shares into a table. So, in addition to using a lower threshold for
validating retrieved information,k′ ≤ k, one can simply make additional tables, each
holding the same user information, but distributed with independent sets of salts. Thus,
a 4-terabyte storage system can be broken into 4 1-terabyte storage systems, each with
an independent chance of failure.

Using separateindependentsets of salts over many separate tables is analogous to
the practice of using drive backups from different manufacturers and models, in order
to ensure that the hardware failure rates are truly independent. So, by adding tiers of
tables, one can reduce an already small chance of failure into an infinitesimal risk.

4 Security Analysis

By storing secret data in a large, structured file, attackers are forced to copy and ana-
lyze the entire terabyte-sized file as a whole. No single portion of the file yields useful
information in isolation. Below, we evaluate the improved security provided by VAST,
and the reliability of the system.
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4.1 Cost of Brute-Force Attacks

Below, we analyze the solutions VAST provides, namely (a) reliable and efficient re-
trieval of stored secrets, and (b) greater defense against key-cracking attacks.

Attacks in General. Broadly, attacks on storage files fall into two categories: on-line
attacks and off-line analysis [PM99,Bis03]. The on-line analysis of keys is difficult
in VAST for several reasons. First, scanning the hash file in a linear fashion does not
provide the attacker with any information about which entries are valid hash stores. (Re-
call that unused entries are initialized with random bits, and data is stored in encrypted
shares, which also appear random.) Interestingly, all of thek Shamir secret keys are
present in the same file; however, the attacker has

(
m
k

)
possible combinations. Recall

thatm is enormous, say in the range of240, andk is not negligible, say in the range of
8-10. So

(
m
k

) ≥ (240

8 )8 ≥ 2296, and the presence of all the shares on the tableT does
not help the attacker more than guessing.

Since sequential or adjacent shares on disk may be read more quickly than shares
distributed on random parts of the drive, an attacker may attempt to precompute nu-
merous hashes for key guesses, and upload the sorted precomputed indices. That is, an
attacker might compute, using a dictionaryD, with P permutations per word, some
{|D| · P · nk} hashes offline, and sort them by index value to improve drive access
times, since many shares for many guesses will be adjacent, or at least within the same
logical block on disk. (Recall, for example, that drive reads from adjacent locations on
disk may be faster that reads from non-adjacent tracks and sectors [HP03].) However,
if the VAST system is properly bandwidth limited, the attacker will find this slow going
as well. The minimal space needed to request a single share is 8 bytes. Assuming a dic-
tionary of just ten thousand words is used, with only a hundred permutations per word,
the attacker would have to upload approximately 8 megs for each userand each salt.
Because VAST systems are deployed on low-bandwidth links, this could potentially
take a long time, and could easily be detected. Even if the attacker somehow uploaded
the precomputed indices, they still have to obtain thek shares and find if anyk′ subset
solves a polynomial to recoverX1 andX2.

Without sufficient resources on-line, an attacker’s preferred strategy would be to
transfer the hash file for off-line for analysis. Assuming an attacker somehow transfers
a tera-scale file offsite for analysis, the size of the file presents a second hurdle: repeated
I/O operations.

Disk access takes on the order of 5 to 20 milliseconds, compared to 50 to 100
nanoseconds for DRAM. While drives are getting faster, they are on average 100,000
times slower than DRAM by most estimates [HP03], and are expected to remain rela-
tively slow [Pat94].

Given this, Anderson’s formula [Bis03] can be used to estimate the time it would
take to checkN possible keys, withP probability of success (of one key guess) and
G guesses performed in one time unit:T = N

PG . To perform an exhaustive key space
search, an attacker might load some of the hash file into memory,m′, while the bulk of
it, m−m′, must remain on disk. For those key guesses that hash to a memory store, the
attacker would enjoy a fast lookup rate on par with existing cracking tools. But most
of the time, the attacker would have to read from disk. Since VAST’s indexing schema
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uses hash operations that provide uniform dispersion, the ratio of memory to disk is
applied to the rates for drive and memory access. We assume that the time required
for a disk-bound validation operation is a factor ofL of the time for memory-bound
operation, and letr = m′

m . We can then modify the guess rateG in Anderson’s formula
to reflect the rate for disk access, so it becomesG(r + (1− r)L). Sincek′ shares must
be read to validate a guessed key, the guess rate is further reduced toG(r+(1−r)L)

k′ . We
thus have the following claim:

Property 3. In the VAST system, the time taken to successfully guess a key (with prob-
ability P ) is:

T = k′
N

PG(r + (1− r)L)
(4)

In this light, existing encrypted file schemes are just a special case of the VAST
system withr = 1 andk′ = 1, and a much smallerm. Our objective is to makeT as
high as possible. If we make the table very large,r is close to zero, then Equation (4) is
close toT = k′ N

PGL . This means then the deciding factor isL, or the time required for
disk access.

Our implementation of a single-CPU cracker resulted in a rate for memory-bound
operations of just over 108,000 hash operations per second, while the disk-bound guess-
ing yielded approximately 238 hash operations per second. No doubt, different hard-
ware will produce different results. But on the whole, systems designers note that
disk access is at least 100,000 times slower than accessing memory [HP03], i.e., L =

1
100,000 , so one might expect the ratio ofL to improve only slightly [Pat94].

Using the modified Anderson’s formula, we can estimate progress on a single ma-
chine, making the conservative assumption of a key alphabet of 95 printable characters,
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Fig. 2.Figure (a) shows how the ratio of memory to table size affects guess rates for key cracking.
The graph assumes 6 character keys selected from 95 printable characters, and 5 salts per user, and
m = 240 entries. Reasonable progress is only possible when memory size is large enough to hold
the entire table. Figure (b) shows the guess rate when low-memory clients are used, effectively
zooming in on a portion of figure (a). With less memory, the guess rate is consistently slow.
Administrators can force attackers into a low-performance portion of the curve just by adding
inexpensive additional drives
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merely 6 character keys, and only five salts per data item. Figure2(a) plots the time
it takes to guess a key, as a function of the ratio of memory to disk size. If one has a
1:1 memory disk ratio (i.e., a terabyte of memory, approximately $1.6 million [FM03]),
the cracking time still requires over 9,500 hours–about 13 months. We presume that
most attackers will have less than a terabyte of memory available. In such a case,
their rate of progress is significantly worse–on the order of hundreds of thousands of
hours.

Administrators worried about distributed cracking tools have a simple and effective
defense: just grow the hash file. Space does not permit a complete discussion of table
growth, but an intuitive approach is to place the old table within the larger table, and
rehash each user into the larger space when they access their stored message.

Note that there are several orders of magnitude in price difference between drives
and memory. This means that if adversaries attempt to match the size of the storage
table with more memory, an administrator merely needs to buy more disk space. For a
few thousand dollars, administrators force the attackers to spend millions to match the
size of the table. This is an arms race attackers cannot easily afford.

4.2 Reliability Analysis

When shares are written to the table, there exists a chance that valid entries may be
overwritten by shares for another data item. The probability of no collisionwhatsoever
when inserting a total ofn items, each withk shares, is computed as:

P0 =
nk−1∏

i=0

(
1− i

m

)
(5)

For practical purposes, we assume hash values are independent for a good-enough
secure hash function. We can use the Equation (5) to compute for a desired probability,
say99.9999%, how many data elements (each with somek hashes) can be stored in a
table with sizem.

We can relax the matching requirement a bit, as long as the data hask′ ≤ k shares
in the table, the data can be retrieved. That is, for each element, we allow at mostl =
k − k′ of its shares to be overwritten by other write operations. Intuitively, we can then
accommodate more data using the same table while achieving the same desired (low)
probability of rejecting a valid key. The exact calculation ofPl, the probability that each
data item has at leastk′ valid shares (i.e., no more thanl shares are overwritten), is very
complicated. For simplicity’s sake, we can compute the lower bound ofPl. We use the
following:

P ′l =
n−1∏

i=0

k−1∏

j=0

(
1− ik′ + j

m

)
(6)

This can be interpreted as: when inserting thek shares for theith data item, avoid
the first k′ valid shares for each of the(i-1)th items already in the table, and thek
shares of theith item themselves do not overwrite each other, (i.e., there is no self-
collision.) It is easy to see that this calculation does not include other possible ways
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Fig. 3.a) The number of user data entries in a table versus the chance that no collisions occur, for
a table withm = 240 entries, and ten salts per data item. By tolerating a few collisions,k′ < k,
higher reliability is achieved. b) The relationship between table size, item count, and successful
operation. For small tables, variations ink′ may be necessary to improve reliability. More tables
can also be added cheaply to improve performance. Alternatively, one can restructure the table
into tiers

that can lead to the condition where each item has at leastk′ valid shares. Therefore,
P ′l is a lower bound ofPl, i.e., Pl ≥ P ′l . It is obvious thatP ′l ≥ P0. Therefore, we
havePl ≥ P0. For largem and smalll, P ′l is very close toPl. We thus use this simple
estimation.

Figure 3(a) shows the benefit of allowing some collisions (up tok = k′ to oc-
cur). As more data is added, there’s an increasing chance that one item will suffer
more thank − k′ collisions. At some point, the risk of such failure becomes unac-
ceptable, and larger tables or table tiers must be used. One may be tempted to lower
k′ even further. However, recall that ifk′ is too low, an adversary has a greater prob-
ability of stealing a portion of the file and obtaining all of the required shares. Specif-
ically, if only z bytes are stolen, there is a( z

m )k′ chance of all an item’s shares are
exposed.

Conceptually, it is best to fix an error rate, estimate the maximum number of data
items, and design the file size accordingly. Figure3(b)shows the flexibility of each pa-
rameter. To obtain a fixed error rate, one can increase the size of the table. One can also
adjustk and (to a lesser extent)k′ to achieve the desired error rate. If one is constrained
by a drive budget, and cannot find a configuration with an acceptable reliability, then
table tiers provide a solution.

The VAST system also addresses the problem of malicious data corruption. If an
attacker does not attempt to read the secret data, but merely tries to delete it, VAST
provides two defenses. First, the attacker does not know where the secret shares are
stored, so the attack must corrupt nearly a terabyte to have a chance of success. Second,
if the attacker merely corrupts a fraction of the storage table, subsequent reads can
detect the errors, and create new salts, thereby “healing” the table with each read. In a
normal secret storage system (e.g., a password-protected file), the attacker merely has
to change as little as one byte to damage the file.
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4.3 Efficient Legitimate Use

To fully evaluate a security enhancement, the increased cost of an attack should be
balanced against the costs imposed on legitimate use. An implementation and testing
of VAST shows that it can efficiently handle many data retrieval operations per second.
Each operation involves a hash computation, a seek and a read from disk. Even though
retrieving information may require up tok disk reads, in practice the number of salts is
small enough to make this efficient. In our tests, when all table operations require drive
access, the number of operations is limited to around 250 per second per drive, using
a slow (5400 rpm) IDE drive. Thus, when using low-end equipment there is an upper
limit to how many records can be retrieved at a time. If one anticipates more than250/k
simultaneous reads, then the hash store may use faster drives, or could be distributed
over a RAID system.

An important observation is that, once completely I/O bound, the performance of
VAST does not decrease with larger tables. Figure4 shows that with small tables (un-
acceptable from a security point of view), a good portion of the file can be cached by an
operating system’s I/O buffers. As a result, reads are quick, and hundreds of thousands
of hash validations can be performed per second. As tables grow in size, particularly
at around225 entries an above, the majority of the hash file then resides only on disk,
and performance degrades. With large files, I/O comes to dominate thefind() oper-
ation time (which includes both I/O and memory operations for decryption and share
recovery). Thus, the performance does not degrade further. Eventually, a steady rate is
reached as the OS block cache becomes dominated by the drive seek time. So, one may
add more terabytes to a hash store without lowering performance further. In fact, in our
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Fig. 4.Performance of a VAST system deployed on FreeBSD, retrieving random records. Due to
the unpredictable location of shares on disk, and coincidental proximity of some hashes in single
(8K) blocks, performance varied. Plots show the mean number of hash-seek-read operations, with
standard error, compared to table size. In practice, one would use a terabyte-sized file. But the
output for smaller-sized files is included to show how memory greatly speeds up performance.
Significantly, even though performance degrades for larger files, it reaches a minimum of no
less than 250 operations per second. Thus, one may add more terabytes to an I/O-bound VAST
system, and expect no further performance degradation
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testing we observed a very slight increase in performance with the addition of each new
drive since each spindle provides its own independent service rate.

One might be concerned about the efficiency of reading anyk′ subset ofk shares.
That is, if the authentication phase must find the rightk′ of k, it could potentially take(

k
k′

)
operations. In practice, however, the firstk′ of the k shares will almost always

provide a correct match. Even under considerable load, the system may be designed to
perform with 99.9999% success. And sincek andk′ do not differ much and are small,
around 10-15, the rare worst case scenarios will not take an unreasonable amount of
work to complete.

5 Conclusion

Despite the best efforts of systems administrators, storage systems will become vulner-
able, and attackers will sometimes succeed. The VAST system provides a way to store
information that resists successful penetrations. In addressing this problem, this paper
contributed the following points.

First, we studied the problem of protecting secret data storage against insider at-
tacks, and formally defined it as the problem: How to store data in a table such that no
fraction of the table yields useful information? Reasoning about this problem suggested
the use of large storage systems to minimize the attacker’s chance of success, and to
increase the cost of attack.

We then proposed the VAST system as one possible solution to the secure data stor-
age problem. Each secret has its multiple shares randomly distributed in an extremely
large file. Random decoy shares and the lack of usable identification information pre-
vent selective copying or analysis of the file. No single part of the file yields useful
information in isolation from the rest. The file’s size and structure therefore present an
enormous additional hurdle to attackers attempting to transfer, steal or analyze the data.

Finally, we implemented the VAST system, and demonstrated that it performs rea-
sonably well for normal use. Experiments show that breaking VAST requires an enor-
mous amount of time and resources. Under our security model, VAST greatly improves
the security of data storage as well, since attacks are likely to trigger an alert and re-
sponse. Unlike previous work, e.g., [FDP91,FDR92,DFF+88], VAST requires only a
single host, and presumes an attacker may access the protected file.

Using large files to safely store data is a counter-intuitive approach to security. VAST
demonstrates how algorithms that maximize the number of I/O operations can be used
to improve security, similar to traditional fragmentation-and-scattering schemes. With
affordable tera-scale storage devices, we believe solutions to the table storage problem
now have many practical applications.
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