
Gyrus: A Framework for User-Intent Monitoring of
Text-Based Networked Applications

Yeongjin Jang, Simon P. Chung
Georgia Institute of Technology

yeongjin.jang@gatech.edu, pchung34@mail.gatech.edu

Bryan D. Payne
Nebula, Inc.

bdpayne@acm.org

Wenke Lee
Georgia Institute of Technology

wenke@cc.gatech.edu

Abstract—Traditional security systems have largely focused on
attack detection. Unfortunately, accurately identifying the latest
attack has proven to be a never-ending cycle. In this paper, we
propose a way to break this cycle by ensuring that a system’s
behavior matches the user’s intent. Since our approach is attack
agnostic, it will scale better than traditional security systems.

There are two key components to our approach. First, we
capture the user’s intent through their interactions with an
application. Second, we verify that the resulting system output
can be mapped back to the user’s interactions. To demonstrate
how this works we created Gyrus, a research prototype that
observes user interactions for common tasks such as sending
email, instant messaging, online social networking, and online
financial services. Gyrus secures these applications from malicious
behavior such as spam and wire fraud by allowing only outgoing
traffic with content that matches the user’s intent. To understand
how Gyrus captures user intent, consider the case of a text-
based application. In this case the user’s input is displayed
on the screen so the user can confirm that their input is
correct. Gyrus builds on this concept by focusing on what is
being displayed to the user instead of what the user has typed
or clicked. We call this the “what you see is what you send
(WYSIWYS)” policy. We implemented Gyrus under a standard
virtualization environment, and our prototype system successfully
stops malware from sending unintended content over the network.
Our evaluation shows that Gyrus is very efficient and introduces
no noticeable delay to a users’ interaction with the protected
applications.

I. INTRODUCTION

Host-based security systems have traditionally focused on
detecting attacks. Misuse detection targets attacks that follow
a predefined malicious pattern, whereas anomaly detection
identifies attacks as anything that cannot be the result of correct
execution under any input or execution environment. It has
been shown over time that systems following this approach
usually have too narrow a definition of “attacks”1; misuse
detection generally cannot detect new attacks, while anomaly
detection are known to suffer from mimicry attacks.

1Usually necessary to keep false positive rate acceptable.

Instead of perpetuating the cycle of attack analysis, signa-
ture creation, and blacklist updating, we believe a more viable
approach is to create an accurate model of what is the correct,
user-intended behavior of an application, and then ensure the
application behaves accordingly. The idea of defining correct
behavior of an application by capturing user intent is not
entirely new, but previous attempts in this space use an overly
simplistic model of the user’s behavior. For example, they
might infer a user’s intent based on a single mouse click
without capturing any associated context. While in some cases
(e.g. ACG [30]), the click captures all the semantics of the
user’s intent (e.g. access the camera), in other cases (e.g.
BINDER [6], Not-a-Bot [15]), the user’s intent involves a
richer context, and failure to capture the full semantics will
again allow for attacks to disguise as benign behavior. For
example, imagine a user who intends to send $2 to a friend
through PayPal. A mouse click can identify the user’s intent to
transfer money, but not the value or recipient of the transfer. So
this $2 transfer to a friend could become a $2,000 transfer to
an unknown person. Without context, it is simply impossible to
properly verify a user’s intent, regardless of if we are protecting
a financial transfer, an industrial control system, or a wide
range of other user driven applications.

In this work, we propose a way to capture richer semantics
of the user’s intent. Our method is based on the observation
that for most text-based applications, the user’s intent will be
displayed entirely on screen, as text, and the user will make
modifications if what is on screen is not what she wants. Based
on this idea, we have implemented a prototype called Gyrus2

which enforces correct behavior of applications by capturing
user intent. In other words, Gyrus implements a “What You
See Is What You Send” (WYSIWYS) policy. Gyrus assumes
a standard VM environment (where Gyrus lives in the dom-
0 and the monitored applications live in dom-U3). Similar
to BINDER and Not-a-Bot, Gyrus relies on the hypervisor
to capture mouse clicks from the user, and use these as an
indication that the user intends the application to perform
certain actions. To capture the semantics of user intent that
cannot be inferred from just observing a mouse click, we take
the approach of drawing what we think the user should see
in the dom-0. In particular, the dom-0 will draw a secure
overlay on top of dom-U display window (the VNC viewer
in KVM environment), covering editable text area of targeted

2The fusiform gyrus is a part of the human brain that performs face and
body recognition.

3In this paper, we adopt the terminology from the Xen community. In other
settings, the dom-0 is referred to the Security-VM, while dom-U is referred
to the Guest-VM.

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’14, 23-26 February 2014, San Diego, CA, USA
Copyright 2014 Internet Society, ISBN 1-891562-35-5
http://dx.doi.org/doi-info-to-be-provided-later

applications in dom-U, while leaving the rest of the dom-U
display visible. We stress that this rendering is isolated from
dom-U – software in dom-U cannot overwrite or modify what
has been drawn. Since we render all editable text the user sees,
we can easily confirm that what is intended is what we have
drawn. By drawing all the text the user is supposed to see in
our overlay, Gyrus can also handle scrolling properly. Even if
only part of the text is displayed at any time, Gyrus can keep
track of what has been displayed over time and derive the full
content of the user intended input.

To determine what text to display in the overlay, we deploy
a component called the UI monitor in dom-U. We stress that
the UI monitor is not trusted, since incorrect behavior in this
component will be immediately noticed by the user, and only
result in a DoS in the worst case. The UI monitor is also
responsible for telling the dom-0 logic the location of buttons
that signify the user’s intent to commit what is displayed to
the network (e.g. the “send” button in an email client), and
when the user finally clicks on such buttons, Gyrus will make
sure the outgoing network traffic matches the text displayed. In
short, Gyrus enforces integrity of user-generated network traf-
fic, and prevents malware from misusing network applications
to send malicious traffic even if the malware mimics legitimate
applications by running an application’s protocol correctly or
injects itself into benign applications. Note that Gyrus only
checks network traffic under protocols used by the protected
applications, and it does not interfere with traffic from other
applications, such as background services, RSS feed readers,
and BitTorrent clients. Also, Gyrus can support asynchronous
or scheduled traffic like e-mail queued for sending in the
future. From our evaluation, Gyrus exhibits good performance
and usability, while blocking all tested attacks.

Any attempt to make sure an application behaves according
to user intent will have some application-specific logic, and
Gyrus is no exception. This is inherently true for our approach
because: 1) different applications will have a different user in-
terface, and thus user intent will be interpreted differently and,
2) different applications will have different logic for turning
user input into network traffic or other forms of output. The
best we can do is to make the per-application logic as easy to
build as possible. In Gyrus, we simplify the UI-related part of
the per-application logic by making use of an existing library
for assistive technology called UI Automation. As for the logic
to map user intent to expected behavior of an application, the
complexity mostly depends on the application, and Gyrus and
the WYSIWYS policy is not suitable for all applications. In
particular, applications with arbitrarily complex encoding of
their text, or those using proprietary protocols cannot be easily
supported by Gyrus. Nevertheless, we have shown that it can
be used on email clients, instant messenger applications, online
social network services and even online financial services.
Section V discuses what applications are best protected by
Gyrus.

The per-application development cost for Gyrus is justi-
fiable since Gyrus is attack-agnostic: it makes assumptions
about what the attackers are trying to achieve but not how.
In other words, once one builds the logic for an application,
Gyrus will be able to protect that application against an entire
class of attacks, no matter how attacks evolve. Therefore, over
time, the cost of deploying Gyrus will be lower than existing

host-based security systems, which usually need continuous
updating to stay current with the latest attacks.

Finally, we emphasize that Gyrus does not replace existing
host-based security systems. Instead, Gyrus uses a different
philosophy to fill a gap in traditional security systems by
defining and monitoring normal behavior. Thus, Gyrus fits best
when it is used to complement other security systems, such as
antivirus, firewalls, and intrusion detection systems (IDS).

The primary contributions of our work include 1) the
“What You See Is What You Send” concept which includes
securely capturing what the user sees on the screen at the
time an event triggers outgoing traffic. Using this, we can
determine what the user intended outgoing traffic should be
for an important class of applications. Furthermore, our idea
is transparent to the OS and applications, and only requires
standard assumptions about the virtualized environment. 2)
The demonstration of how we can use common features such
as accessibility libraries4 for inter-VM monitoring without
knowing the internals of the monitored applications. And 3) the
demonstration of the viability of Gyrus by implementing the
framework along with support for real-world applications in
Microsoft Windows 7. Our prototype currently supports email,
instant messaging, social networking applications, and online
financial applications, effectively covering the most common
network applications in everyday use.

The rest of this paper is organized as follows: Section II
discusses related work. Section III discusses the Gyrus threat
model and the rationale of our What You See Is What
You Send policy. Section IV presents the architecture and
implementation details for Gyrus. Section V demonstrates how
Gyrus can be used for real world applications. Section VI
presents the evaluation of the Gyrus framework, and finally
we conclude in Section VII.

II. RELATED WORK

This section discusses the related work and how Gyrus
improves on the current state-of-the-art. The discussion is also
intended to provide some context for our work. We group
the related work into three areas: 1) capturing user intent, 2)
trusted execution environment, and 3) verifiable computation.

A. Capturing Human Intent

Like Gyrus, BINDER [6] and Not-A-Bot (NAB) [15] also
try to determine if outgoing traffic is legitimate based on
observed human intent; in particular, both systems enforce a
policy which states that outbound network connections which
come shortly after the user input is user intended. However,
as stated in the introduction, in some cases only capturing
the timing of user-generated events is not enough. In contrast
to BINDER and Not-A-Bot, Gyrus captures more semantics
of the user’s intent, so only traffic with the correct content
can leave the host. Also, since BINDER and Not-A-Bot use
timing information to determine if traffic is user intended,
they cannot handle asynchronous network transactions (such as
emails queued to be sent later); Gyrus solves this problem by
relying on the semantics, but not the timing of user generated

4Similar capabilities should be available on most systems that support screen
reader for visually impaired users.

2

events, and by decoupling the capturing of user intent from
the enforcement of its traffic filtering policy.

User-Driven Access Control [30] captures the user’s intent
for security purposes using an access control model that grants
permissions based on a user’s GUI interactions. It uses access
control gadgets (ACGs) to capture a user’s intent. Clicking
on an ACG grants permission on a resource associated with
the ACG. Gyrus uses a similar approach on UI widgets to
identify traffic-triggering user input. However, in User-Driven
Access Control, the permission is bound to certain user-owned
resources, not to the content the user intends to send to these
resources. In other words, when the user clicks on an ACG that
has permission to use the network device, any outgoing traffic,
even with a malicious intent, will be allowed. On the contrary,
Gyrus captures both the user’s intent to send something and
also the intended content of that outgoing traffic, and can stop
any unintended network traffic.

B. Trusted Execution Environment

Virtualization has enjoyed resurgence in popularity in re-
cent years. Proponents have argued that by using small, veri-
fiable hypervisor kernels, the isolation of one virtual machine
from another can be assured [22], [16], and recent research
has aimed to enhance this security by reducing the size of the
hypervisor’s code [34], [40], modularizing its components [5],
or verifying its security [20]. These isolation properties make
virtualized environments an attractive way to implement se-
curity applications. Virtualization-based solutions have been
used to implement trusted computing architectures [8], [24],
intrusion detection systems [9], malware analysis systems [18],
and zero-day intrusion analysis systems [19]. However, none
of these take user intent into account and we believe Gyrus
can enrich research in each of these areas by showing how to
build on the isolation provided by a virtualized environment to
perform simple checks that will improve the system’s security.

C. Verifiable Computation

Gyrus has some common goals with the field of verifiable
computation, which has focused on ensuring correct code
execution by an untrusted third party. This work has taken
many forms including general-proof protocols [13], [14], [10],
Probabilistically Checkable Proofs (PCPs) [3], [31], [32], or
relying on fully-homomorphic encryption (FHE) [11], [4].
While these systems can prove that a third party has processed
a requested execution correctly, they cannot tell whether the
input of this execution is correct. Gyrus fills this gap by check-
ing that the input used for a computation is what was provided
by the system’s user. Gyrus then completes the validation by
also checking whether the outcome (e.g, network packet) of
application execution is the correct result for a given input.
Recent work [27] shows that verifiable computation can be
used in practical settings, so we believe that the complementary
aspects of Gyrus and verifiable computation could prove to be
a powerful combination in future security systems.

III. OVERVIEW

In this section, we present a high level overview of Gyrus.
First, we describe our threat model, and then we introduce a
policy called “What You See Is What You Send” (WYSIWYS),

which is integrated and enforced by Gyrus to address the threat
model. Then, we describe the essential elements of Gyrus, and
discuss suitable applications of Gyrus.

A. Threat Model

Gyrus is designed to utilize a standard virtualized environ-
ment with a hypervisor (VMM), a trusted dom-0 that executes
most parts of Gyrus, and an untrusted dom-U that runs the
applications to be protected as well as with some untrusted
components of Gyrus. We collect data for determining a user’s
intent from the hardware input and output devices, including
the keyboard, mouse, and monitor. We make the following
security assumptions:

1) The hypervisor and dom-0 are fully trusted.
2) Attackers cannot have physical access to the machine,

and we trust the hardware.
3) All hardware input events must be interposed by the

hypervisor, and they must first be delivered to dom-0.
The hypervisor provides complete isolation of input
hardware, preventing hardware emulation originating
from dom-U.

4) Dom-U is not trusted, therefore it can be compro-
mised entirely.

We stress that we do not apply any security assumption
on dom-U. This implies that Gyrus could function correctly
even if the dom-U is entirely compromised (including kernel-
level attacks). In other words, even though Gyrus extracts
information from the memory of dom-U by running a helper
component called UI Monitor inside of it, we do NOT assume
the correctness of such information. Instead, we designed
a trusted component called a Secure Overlay to verify the
validity of this information. Detailed information for these
components will be described in the next section.

B. User Intent

As mentioned in the introduction, the goal of Gyrus is
to capture rich semantics to understand a user’s intent. This
is used to ensure that only user intended traffic can leave
the system. In this context, user intent is limited to what
we can infer from the system’s input devices. In BINDER
and Not-a-Bot, user intent is captured by directly observing
input hardware events (mainly from keyboard and mouse).
However, this approach is limited due to the missing contextual
information and the challenges of reconstructing user content
without “seeing” the screen. In order to make a sound security
decision, we must capture more detailed information about the
user’s intent. For example, the task of reconstructing a message
from a mail client using only keystrokes and mouse clicks
would require us to reconstruct the entire windowing system
and the logic behind text boxes (e.g. how to update the location
of the caret upon receiving keyboard/mouse input), as well as
to reproduce the logic to handle application-specific function
keys.

C. What You See Is What You Send

Instead of capturing and reconstructing user intent strictly
from hardware input events, our solution is to monitor output
events from the target applications. The main observation be-
hind our approach is that in almost all text-based applications,

3

Fig. 1. Secure Overlay working with the GMail application in Internet
Explorer 10. Overlaid edit controls are highlighted with green bounding box.
Gyrus changes the border color to red if it detects any infringement.

the text that the user types will be displayed on the screen. This
allows the user to know that she has typed correctly and made
the necessary correction when there is a mistake. Therefore,
we can capture an accurate representation of the user intent if
Gyrus can “see” what a user sees. With this information, we
can determine what the user-intended outgoing traffic should
look like, and make sure that this is the only traffic that the
target application sends. We call this approach “What You See
Is What You Send” (WYSIWYS).

To enforce WYSIWYS, Gyrus is required to correctly and
fully capture textual content that is displayed to the user. In
addition, Gyrus needs information about the UI structure. In
Gyrus, we have two components that implement these features:
a dom-U component called UI Monitor extracts textual content
and a high-level UI structure of the current screen, and a dom-
0 trusted component called Secure Overlay to verify if the
captured text matches the user’s intent.

The UI Monitor operates on top of the UI Automation [26]
library in Microsoft Windows, which is originally intended
for building accessibility utilities such as screen readers for
visually impaired users (i.e., this library is designed to capture
text displayed on screen, and fits our purpose very well). Not
only does the UI monitor capture the displayed text, it also
allows us to determine if the mouse click event observed by
dom-0 signifies the user’s intent to commit what is displayed
on screen to the network.

Since the UI monitor relies on the code in dom-U, we stress
that we cannot and do not trust the output of this component.
Instead, we use the Secure Overlay to show the data captured
by the UI monitor to the user. As a result, the user can either
validate what the secure overlay displays by not modifying
it, or disagree by correcting what she sees (and this will be
captured by the UI monitor again). We call this idea reflective
verification.

Figure 1 illustrates how WYSIWYS works with the UI

Fig. 2. An example WYSIWYS applicable operation: Facebook comment.
After adding a comment and pressing the ENTER key, the application gen-
erates network traffic going to www.facebook.com/ajax/ufi/add-comment.php.
There is a direct mapping of user-intended content between on-screen text and
outgoing traffic.

Monitor and the Secure Overlay. The UI Monitor grabs the
UI structure information from the current screen, including
the location of windows, text boxes, and buttons, along with
textual content from the text boxes. Then the Secure Overlay
positions a transparent overlay screen, and for each text box on
the current dom-U screen it will dynamically draw a matching
text box with the same text content at exactly the same
location. This Secure Overlay component is always drawn
on top of the whole dom-U screen, so it always hides any
text boxes of applications running in dom-U. While input
interaction stays the same from the user’s perspective, the
output that user sees is actually the text that is captured by
the Secure Overlay. And the text shown on the screen will
be updated as the user interacts with the application, so the
user will naturally verify that this captured content matches
her intent.

Gyrus needs to ensure that for all cases, the text shown on
the Secure Overlay is exactly matched with the text that the
underlying application is presenting. However, in our reflective
verification scenario, the user can only verify changes in the
currently visible part of the text. If some lines of text scroll
out of view and then get updated while they are hidden,
this verification process is no longer valid. To handle hidden
updates, Gyrus keeps track of the text and its changes. To
indicate the status of verification, we place a border around the
text box. When everything is as expected, the border is green.
When the hidden text changes, the border turns red, indicating
that the user needs to manually verify the content. In our
experience, Gyrus works well with most text boxes for default
text typing. In addition, it can support text-editing features such
as cut/copy/paste, automatic spell correction, selection of text
from combo box, etc.

D. Network Traffic Monitoring

After Gyrus captures the user’s intent using the UI Monitor
and the Secure Overlay, the second part of implementing

4

WYSIWYS is to ensure that the traffic generated by the
monitored application matches what Gyrus expects based on
the captured user intent. Gyrus assumes that there is a simple
mapping between the captured user intent and the outgoing
traffic. In other words, the network protocol used in the
application must transmit the information displayed to the user
directly or with simple modifications (e.g., text represented
in XML, or a standard encoding such as Base64 and URL
encoding). Even though this assumption does not hold for all
applications, we argue that many everyday applications are
largely text-based and have very simple processing to generate
outgoing network traffic based on the text input from users.
Figure 2 shows an example of a simple mapping between user
input and network traffic content.

Finally, note that Gyrus only inspects specific types of mes-
sages under the protocol used by the protected application(s).
Gyrus will not interfere with any traffic outside of this scope.
Even for traffic originating from target applications, Gyrus
will only check (and potentially block) traffic that contains
user-generated content. For example, for SMTP and instant
messenger protocols, we only check commands for sending
messages. For HTTP(S) traffic, we only inspect certain URLs
that submit user-intended contents, such as posting Twitter
messages, adding comments on Facebook, or sending money
on Paypal. In Section IV, we will describe how to identify
such traffic using the User Intent Signature.

E. Target Applications

Not all traffic that is observed by Gyrus can be traced back
to some user action that explicitly expresses her intent to create
such traffic. For example, when the user tries to load a web
page in the browser, she probably has no knowledge about
what further HTTP requests will be generated to download all
the images on the loaded pages. Moreover, if the text content
of the application is represented using a complex encoding
on the network protocol, (e.g., evaluating some functions or
encryption), Gyrus cannot infer expected output of network
traffic. As such, in this paper, our focus is on traffic that
contains rich semantics about the user’s intent, and we consider
cases where the user does not have a clear understanding
about what traffic their action will create to be out of scope.
Furthermore, we are particularly interested in traffic that is
related to transactions that could create long lasting harmful
effects for the user (e.g., financial loss). Examples of such
transactions include:

1) Transferring money through an online financial ser-
vice.

2) Modifying value fields (e.g., speed of a turbine,
or level of the water in a nuclear power plant) of
SCADA (Supervisory Control And Data Acquisition)
systems.

3) Sending a message through an e-mail client, or an
internet messaging (IM) application.

4) Posting a status update or comment message through
an online social network.

Examples of applications suitable for Gyrus include email
clients, instant messaging applications, various online social
networks and online financial services. We will further illus-
trate how Gyrus can protect critical actions of these applica-
tions in Section V. Our results indicate that the proposed idea

of WYSIWYS is very effective in stopping these applications
from being used to send manipulated traffic by the malware,
thus blocking many traditional venues to profit from com-
promising hosts. In other words, Gyrus can protect sensitive
transactions with rich user-generated semantics from malware
on the host. For example, it can prevent botnet malware from
sending spam e-mails and instant messaging spam, launching
impersonating attacks such as spear phishing, and preventing
malware that transfers money from an online banking account.

IV. DESIGN AND IMPLEMENTATION

A. Architecture

Gyrus employs a virtual machine based isolation mecha-
nism; therefore, its architecture is separated in two parts. Gyrus
puts all trusted monitoring modules in either dom-0 or the
hypervisor, while dom-U remains untrusted. The architecture
of Gyrus is summarized in Figure 3. Gyrus is composed of
several key components:

Authorization Database The Authorization DB stores
authorization vectors, which contain sufficient information
to validate outgoing traffic based on a user’s intent. It is
generated by the Central Control and allows us to temporally
decouple capturing user-intent from the actual enforcement
of the WYSIWYS policy at the network interface. At this
level, our monitoring is independent of the internal logic of
the application. Input events that trigger network traffic (e.g.,
clicking SEND in an e-mail client or pressing the ENTER
key in the text box of an instant messenger application),
will invoke Central Control to create an authorization vector
based on the captured intended content, and save it to the
authorization database. Later, when the outgoing traffic is
generated from the application after processing user input,
the traffic will be analyzed in the network monitor, which
will look in the database for evidence of user intent. Our
network monitor will authorize the traffic only if there exists
a matching authorization vector. Otherwise, it will drop the
packet. Moreover, this decoupling enables Gyrus to handle
asynchronous, or scheduled traffic like e-mail queued to be
sent at a later time.

Network Monitor The Network Monitor is a transparent
proxy with a built-in monitoring capability. It inspects all
traffic under the monitored protocol. If outgoing traffic is using
a protocol corresponding to any of the applications protected
by Gyrus, traffic is inspected by querying the Authorization DB
to see if the traffic is intended by the user. Unintended traffic
is blocked. Also note that the Network Monitor will allow all
traffic from other protocols to pass through without inspection.

User-Intent Signature The User-Intent Signature captures
all the application-specific logic in Gyrus. The signatures are
expressed in a language we designed specifically for Gyrus.
It covers three categories of information: the condition that
triggers network traffic, the required UI structure data for
catching content-intent, and the content of monitored traffic.
This user-intent signature language represents our effort to
simplify and provide structures to the development of per-
application logic under Gyrus.

Central Control Central Control contains the logic that
runs the other elements. Its main task is to process intercepted

5

Fig. 3. Workflow of Gyrus upon receiving a traffic-triggering event. Grayed
and solid-lined areas are trusted components, while dotted lines indicate
untrusted components.

hardware input events. Upon arrival of these events, the Central
Control will query the UI monitor to see if the event signifies
user intent to send the currently displayed content out to the
network. If so, the Central Control will query the Secure
Overlay and User-Intent Signature to generate an authorization
for the expected traffic and save it in the Authorization DB. The
hardware input event will then be delivered to dom-U, finally
reaching its intended destination: a user-driven application.
Since the Central Control does not alter any inputs, it does
not alter the user experience beyond adding an imperceptible
delay (see Table II).

In summary, the workflow of Gyrus can be described as
follows (Figure 3):
The UI monitor communicates with the secure overlay to keep
the information displayed in the overlay up-to-date (0). A
hardware input event reaches the Central Control (1). Central
Control queries the UI Monitor to see if this input triggers
network traffic or not (2). If it does, Central Control queries the
Secure Overlay (3) to create a dynamic authorization vector
that describes the user-intended outgoing traffic and save it
to Authorization DB (4). At the same time, the intercepted
input event is passed to dom-U (4’). After the application
inside dom-U gets the input, it generates the outgoing network
traffic (5). Traffic is intercepted and inspected by the network
monitor. The network monitor queries the Authorization DB
to determine if the intercepted traffic matches user intent (6).
Traffic will be allowed if it matches an authorization vector.
Otherwise, traffic is blocked and Gyrus raises an alarm to
notify the user of a likely attack attempt (7).

B. Implementation

We implemented our prototype of the Gyrus framework
using a Linux / KVM host running Ubuntu 12.04.2 LTS and a
dom-U running Windows 7 SP1. We note that the Gyrus archi-
tecture is not limited to this specific software stack. We chose
KVM and Windows to demonstrate Gyrus in a traditional
desktop environment. In general, Gyrus only requires three
platform capabilities: intercepting input & network events,
accessing UI objects, and drawing a secure overlay UI. There-
fore, Gyrus could be implemented on a variety of different
platforms. For example, Gyrus could use BitVisor [34] as a

lightweight secure hypervisor, or could use the Dalvik VM [2]
on Android as an isolation and hardware event-capturing
instrument. Similarly, the UI Monitor is not limited to the
UI Automation on Microsoft platforms. Other accessibility
frameworks – such as ATK [12] and XAutomation [36] on
Linux or NSAccessiblity [21] on Mac OS X – could replace it.
Finally, Gyrus could be implemented using a thin-client model
with the trusted client terminal [23] and a network monitor on
the remote host.

1) In-Guest UI Monitor: Since our implementation of the
UI monitor is largely based on the UIAutomation library from
Microsoft, we begin with a brief description of this library
before presenting details about the UI monitor.

UI Automation The UIAutomation library represents the
UI structure of every window in the system as a tree of UI
objects. The root of the tree is the desktop, lower level nodes
correspond to individual windows, and further down nodes
correspond to components of a window (e.g., buttons, edit
boxes, etc.). This tree is similar to the DOM tree in a web
browser. Each UI object contains data that describe the visual
aspects of the corresponding components (e.g., size, visibility,
textual content). The UIAutomation library exposes this tree
to calling programs through a set of functions that facilitate
traversing and querying the tree (e.g., we can search for nodes
in the tree with certain properties, or at a certain location on
screen), and allows us to access all properties of the nodes.
Furthermore, the UIAutomation library also allows calling
programs to listen for changes in both the structure of the
tree, as well as properties of individual nodes.

As mentioned in Section III, the UI monitor is a component
that runs in dom-U, and it serves two purposes: to determine
if a keyboard/mouse input event5 signifies the user’s intent to
send something over the network, and to provide information
to the secure overlay to display up-to-date user generated
text in target applications. In other words, implementation
of this component needs to provide two primitive operations:
identifying the object targeted by an input event, and extracting
UI properties from text boxes of interest.

Identifying UI Objects To check whether current input
generates network traffic, the UI Monitor first looks for the
UI object that receives the current input. To determine if a
mouse click, for example, signifies a user’s intent to gener-
ate outgoing traffic, the UI Monitor calls a function named
ElementFromPoint to get the object that is currently
located under the cursor. For the keystroke events, we use
the GetFocusedElement function to retrieve the currently
focused object (which is also the target of the current input).
Upon retrieving the target object for the input event, we can
determine if it is a button or text box of interest by querying
the UIAutomation library for the properties of this object.
Application-specific logic required for determining the traffic-
triggering event is configured with a User Intent Signature (e.g.
checking whether it is a button with its name being Send on
e-mail client). Upon receiving an event that generates traffic,
the UI Monitor collects UI structure information specified in
the User Intent Signature, then uses this to inform the Secure

5Input event here is not the real hardware input event. All of hardware input
is handled by Central Control, and the UI Monitor receives a signal from the
Central Control when an event arrives.

6

Overlay that the traffic-triggering event has occurred. The
Secure Overlay also receives details about what operation and
which application triggered the event, and the content needed
to generate an authorization vector. A point worth noting here
is that we block all updates to the Secure Overlay when we
query the UI monitor. This prevents any malicious updates on
visible data right before the event, even with the prediction of
user’s behavior on traffic-triggering event. Also, we ensure that
the query to the UI monitor completes before the actual input
is delivered to the application inside the dom-U, so it will not
interfere the application’s behavior. Section VI-A presents a
more detailed security analysis of Gyrus.

Extracting Text and UI Structure Data To support the
Secure Overlay, the UI Monitor needs to extract the user-
intended text and associated UI properties. At first, before
extracting the currently displayed text, the UI Monitor registers
the text box to be monitored with the Secure Overlay for
tracking its properties. Whenever a text box is in focus,
the UI Monitor will assign it a unique ID based on the
AutomationID, an identifier from UIAutomation, of the UI
object. This identifier will be used for updating properties of
the overlaid text boxes, and indicating which text boxes are
needed for generating an authorization vector. At the same
time, it extracts the required properties form UI object to
support overlaying. To get the screen location of the text
box, we query its BoundingRectangle property. For text
boxes that support properties such as rich text, formatting,
text selection, and scrolling, the corresponding information
is extracted from the TextPattern object. Finally, the UI
Monitor catches user-intended text from the Value property
of a target text box. For text boxes with hidden content (e.g.,
scrolled-out text), the Value and TextPattern properties
together provide the complete content and useful position
information. The Secure Overlay will be notified of all ex-
tracted data, along with its identifier, to enable displaying this
information back to the user.

To handle updates to the target text box, once we register
a text box, we subscribe to the PropertyChangedEvent
of target object for the Value property of the object, and in
the event handler, we send the updated content to the overlay.
This will update the Secure Overlay whenever the user edits
the text. Finally, we register to listen for the change in position
of the caret object, and forward this information to the overlay
so we can display the caret properly.

In addition to getting properties for the target text box
object, the UI Monitor tracks windowing events when multiple
target applications are involved. In particular, we adopted the
policy of only displaying on the overlay the text content
of the currently focused window; this policy significantly
simplifies our implementation and only has a small impact on
the usability of our system6. Although overlaid text boxes for
background applications are not displayed, the Secure Overlay
maintains previously captured user-intended text while it is

6Alternatively, we could keep track of the visible region of each target ap-
plication by implementing a mirror display device driver. We have successfully
implemented this functionality, but have not yet integrated it with the rest of
our system.

visible, and disables its update while it is hidden7. Therefore,
the text integrity of background applications can be preserved
even if it is not shown on the screen. To handle window focus
change, we listen for the system-wide FocusChanged and
WindowClosed events from the UIAutomation library. In the
handler of these events, we signal the secure overlay to hide
content of the window that is closed or has lost focus, and dis-
play the content of the newly focused window. We also listen
for the EVENT_SYSTEM_MOVESIZEEND event and send the
secure overlay the updated location of the textual content of
the target application whenever it is moved or resized. Finally,
we choose not to listen for events related to window creation,
but only handle newly opened target applications when the text
boxes of interest in these applications first receive focus.

2) Secure Overlay and Central Control: We implemented
both the secure overlay and the central control components as
Java programs that run in dom-0. Since the implementation
of the Central Control is quite simple, we will not present
the details here. However, some implementation details of the
Secure Overlay warrant further discussion.

The Secure Overlay has two primary tasks. First, it is
responsible for securely displaying the user-generated text, as
captured by the dom-U UI monitor. This part mainly involves
some UI/graphics programming, and some book keeping to
group captured text in the same window together for proper
handling of windowing events (in particular, when a window
gains or loses focus, we need to show or hide all captured text
for this window). Our experiments show that the UI monitor
provides us with sufficiently rich information to provide a
seamless user experience; captured text are rendered without
noticeable difference in terms of location, size, font and color
(including background color for highlighting text).

The second task for the secure overlay is to capture and
reconstruct the user’s intent based on all the textual content that
is displayed in the overlay window, so that we can determine
what the user intended outgoing traffic should look like when
the user finally decides to commit what she has typed to the
network. Upon receipt of a traffic-triggering event, the UI
Monitor will send the tag name of the User Intent Signature,
along with identifiers for the text boxes that are required to
reconstruct a user’s intent to Central Control. Based on tag-
matching with a User Intent Signature, the Central Control
extracts text content for each corresponding text box from the
Secure Overlay, builds an authorization vector with them, and
saves it to the Authorization DB.

For creating an authorization vector, the Secure Overlay
should maintain the user-intended text. In the case where all
the user-generated text is displayed on screen, this is very
easily achieved. However, the task is more complicated if the
text is displayed in a text box with scrollbar. In this case, the
UI monitor is still able to capture all the text in the textbox;
however, reflective verification will not work for the text that
has been scrolled out of view. As such, malware in dom-U
can modify the invisible parts of the text without the user
noticing. To solve this problem, the secure overlay keeps track

7Allowing updates while invisible would prevent reflective verification. If
an update is made, the text box will be marked as being “dirty” and will not
be used for creating an authorization vector until the user sees the updated
content by moving focus into corresponding application.

7

of changes in the content captured by the UI monitor and
only considers updates to the target text box that satisfy the
following criteria as valid:

1) Updates cannot occur at multiple non-consecutive
locations (i.e., the difference between the old version
and the new version of some captured text can only
be the result of inserting/deleting a single charac-
ter/chunk of text).

2) Updates can only occur in the visible part of text
(i.e., the point where the character or chunk of text is
inserted or deleted must be visible before the update
occurs).

3) If a chunk of text is inserted, the end of the chunk
must be visible after the update. Similarly, if one
character is inserted, the character must be visible
after the update.

4) If a chunk of text is deleted, the text following
the deleted chunk must be visible after the update.
Similarly, if one character is deleted, the character
that follows must be visible after the update.

If the UI monitor reports updates that violate the above
condition, the secure overlay will draw a red border over the
corresponding text box to let the user know of the problem.
In this case, the user could check the text displayed by the
overlay to determine if her intent was properly captured by
Gyrus. If it was, she can commit the input to the network. The
above design allows us to correctly and securely handle most
normal operations like typing, deleting text using “backspace”,
copy-and-paste, deleting/replacing a chunk of highlighted text,
even autocomplete and auto-spell-correction; the only caveats
we know of are: 1) “Find and replace all”, and 2) if the user
pastes a chunk of text that is too long to be displayed all
at once, some of the pasted text will not be visible in the
entire process, and is subject to illegitimate modifications by
malware. In these cases, the best practice will be for the user
to scroll through the pasted text to ascertain the correctness
(and we believe this is a reasonable practice, even if not for
security reasons).

3) Authorization DB: The Authorization DB saves the user
intent captured by the secure overlay at the time we capture
an input event that signifies the user wants to send something
out to the network, and is queried by the network monitor
when actual outgoing traffic of the corresponding protocol is
observed. To allow for efficient lookup by the network monitor,
we implement the Authorization DB as a hashtable stored in
Ruby, indexed by a data structure called authorization vector,
which captures both the exact content of the expected outgoing
traffic, as well as the expected protocol used to send the
content. We also associate each key in the hashtable with a
numeric value which indicates how many messages matching
that key can be sent, so we can handle scenarios where the
user intend the same message to be sent multiple times.

4) Network Monitor: The network monitor is implemented
as a set of transparent proxies, one for each protocol of
interest. Each of these proxies has deep packet inspection
capability, and we used iptables to redirect all of the traffic
of each monitored protocols’ port to the corresponding proxy
for inspection. For SMTP and YMSG, we used stand-alone
proxy software proxsmtp [38] and IMSpector [17], respectively.

Fig. 4. UI structure of Windows Live Mail. Tree structure on the left is
from Inspect.exe. ‘0’ indicates event-receiving object (send button), +2 and
+3 indicate 2nd and 3rd sibling from the origin (negative number indicates
previous sibling). ‘P’ is a symbol for a parent, and ‘C’ refers to child.

For HTTP, even though there exists a transparent proxy with
the capability of ICAP [7] handling such as Squid [39], we
wrote our own implementation due to performance issue8.
For SSL/TLS encapsulated protocols (e.g, HTTPS, and SMTP
TLS), we use the Man-In-The-Middle (MITM) approach to
decrypt the traffic to be analyzed, and re-encrypt it afterwards.
In particular, we created a self-signed CA certificate and
CA-signed wild-card certificate, and inject the CA certificate
to dom-U as a trusted CA. With these certificates, Gyrus
can impose itself as the server at the setup phase for SSL
connections, and be able to decrypt any subsequent traffic from
dom-U to the actual server. Finally, we note that this MITM
approach is not an invention of our own, but is widely used
approach for deep packet inspection with IDSs/IPSs [33].

5) User-Intent Signature: As we have mentioned in the
introduction, an approach that tries to model and enforce
correct behavior of applications will inevitably have some per-
application logic. To make this development process as pain-
less as possible, we created our own language for specifying
the per-application logic, as well as the programs to interpret
the specifications. We call specifications under our language
User-Intent Signatures, and we express these signatures in the
JSON (JavaScript Object Notation) format. Each user intent
signature contains eight JSON object fields, and the names
of the fields are: TAG, WINDOW, DOMAIN, EVENT, COND,
CAPTURE, TYPE, and BIND. In the following, we will give
a brief description of each with its intended purpose. Please
refer to Example 1, and Example 2 for examples of user intent
signature, as well as more specifics of the signature language.
Before starting, we first note that the TAG field in this signature
is for assigning a unique signature name.

Identifying Traffic Event and Focused Application Our
monitor component UI Monitor uses this signature to iden-
tify traffic-triggering input events. To specifying a traffic-
generating event in a User Intent Signature, the signature writer
can set the EVENT field. This field will contain the value
of required hardware input event. For example, it could be
LCLICK to indicate a left mouse click on the send button of
an e-mail client, or ENTER for reacting on pressing return key
on the message dialog of an instant messenger application.
The traffic-triggering event is only partially defined by this
field. It should be linked with application-specific, operation-

8Squid did not support multi-threading for traffic relaying. It can cause
severe delays when a web browser loads a web page.

8

Example 1 User Intent Signature for sending e-mail on
Windows Live Mail.

{
"TAG" : "LIVEMAILCOMPOSE",
"EVENT" : "LCLICK",
"WINDOW" : "ATH_Note",
"COND" : {

"0" : {
"CONT" : "BUTTON",
"NAME" : "Send this message now"

},
"+2" : {

"CONT" : "EDIT",
"NAME" : "To:"

},
"+3" : {

"CONT" : "EDIT",
"NAME" : "Subject:"

},
"P-1CCCCCCCCC" : {

"CONT" : "PANE"
}

},
"CAPTURE" : {

"A" : "+2.value",
"B" : "+3.value",
"C" : "P-1CCCCCCCCC.value"

},
"TYPE" : "SMTP",
"BIND" : {

"METHOD" : "SEND",
"PARAMS" : {

"to" : "A",
"subject" : "B",
"body" : "C"

}
}

}

Example 2 User Intent Signature for posting comments on
Facebook Web-app.

{
"TAG" : "FBCOMMENT",
"EVENT" : "ENTER",
"DOMAIN" : "www.facebook.com",
"COND" : {
"0" : {

"NAME" : "Write a comment...",
"CONT" : "EDIT"

},
"P-1" : {

"CONT" : "IMG"
}

},
"CAPTURE" : {
"A" : "0.value"

},
"TYPE" : "WEB",
"BIND" : {
"URL" : "www.facebook.com/ajax/ufi/add_comment.php",
"METHOD" : "POST",
"PARAMS" : {

"comment_text" : "A"
}

}
}

specific information to correctly identify whether the input will
be delivering to the specified application. For correctly figuring
out the details from an input receiving application, we use
the tree-structure information of UI, in addition to a simple
indicator such as the name of the window for stand-alone
apps, or domain name of currently visiting page URL in web-
apps. Example 1 shows how the signature is constructed to
detect a Windows Live Mail application. In the compose view
of the application, its window name is always ATH_Note,
so the WINDOW field indicates this information. The sub-
components in the UI tree-structure are – starting from the
event receiving object – a button named “Send this message
now”, text edit boxes for the ‘To’ and ‘Subject’ fields, and a
content pane for the e-mail message text. Figure 4 illustrates
how this tree-structure is formed in UIAutomation. Note that
under the COND region, all of the conditions are listed. For
internal fields, the number indicates the relative distance from
an event receiving object as siblings on the tree. So ‘0’ means
the object specified triggered the event, and ‘+2’ or ‘+3’
indicates the next siblings at the specified distance (negative
number indicates previous sibling). ‘P’ and ‘C’ refers to
parent and child, respectively.

For the UI Monitor, when an input comes, we iterate
over all signatures that have an EVENT field with the current
input, and check the UI tree-structure conditions to determine
whether current input triggers traffic or not. If it does, as
our workflow goes, the required data will be sent to Central
Control to generate an authorization vector.

The Network Monitor also uses this signature for deter-
mining whether the current packet is monitored or not. We
use the TYPE field to specify the monitored protocol. Its
value can be a protocol name (e.g., SMTP for e-mail client
and WEB for web-apps). Since network monitor only traps
some transactions for each protocol, to bind a signature to
a certain transaction, we use the METHOD field under BIND
to specify the desired transaction for non-web protocols9,
and both METHOD and URL10 fields are used for web-apps
(METHOD is for distinguishing GET and POST messaging in
web-apps).

Specifying User-Intended Text The User Intent Signature
is also responsible for indicating which text boxes correspond
to the user’s intent, for generating authorization vectors. With
the UI Monitor, it uses the CAPTURE field to indicate text
boxes that contain user-intended text. In this field, the left-side
key value is assigned alphabetically to simplify text matching
in for network packets, and the right-side indicates the location
of the target text box on the UI tree-structure, and any required
properties for it. According to this information, the UI Monitor
transmits a unique identifier of target text boxes to Central
Control, then Central Control extracts verified text from the
Secure Overlay, and finally the authorization vector will be
created and saved based on this information. The vector will
be in a form that can be reconstructed within the Network
Monitor.

For the Network Monitor, it refers to the PARAMS field
9We assigned natural names for each operation. METHOD = SEND in

Example 1 means that the signature should only monitor sending operations
in the SMTP protocol.

10As a concept of remote procedure calls, URL in an web-app is analogous
to invoking a function on the host, so it can indicate certain transactions.

9

to extract content from the packet. The left-side key value for
this is a natural name for the stand-alone protocol, or the URL
parameter for web-apps. The right-side value has an alphabet
value that is previously assigned in the CAPTURE field, which
is used to link captured text boxes to each parameter within
the current packet. Since an authorization vector is created
with knowledge of the PARAMS field, the Network Monitor
can reconstruct the correct vector using only this packet and
signature data. After reconstructing the vector, we query the
authorization DB to check for proof of previously established
user intent.

V. APPLICATION CASE STUDIES

In this section, we will present our experience in using
Gyrus to protect existing applications. Our experiments cover
both traditional, stand-alone applications as well as web appli-
cations. For stand-alone applications, we studied how to apply
Gyrus to Windows Live Mail and Digsby (an instant messaging
client). As for web applications, we picked the following from
the top 25 sites according to Alexa [1]: GMail, Facebook and
Paypal, and for our studies, we assume these web applications
are accessed using Microsoft Internet Explorer 10. We argue
that these applications represent some of the most important
ones in daily life, and we base this argument on the Pew
Internet survey called “What Internet Users Do On A Typical
Day” [28], which lists sending/reading emails, using online
social networking, doing online banking and sending instant
messages among the 20 things most people do on a daily
basis. We also observe that the remaining of the listed popular
activities mostly involve users getting information from the
Internet, and does not involve the transmission of any user
generated content, and thus are not the target for Gyrus
protection.

The focus of the following discussion is on how we can
specify the per-application logic necessary for Gyrus protec-
tion for each of the target applications using a User Intent
Signature. We believe our experience shows that the User
Intent Signature language makes this task very manageable.

A. Constructing User Intent Signature

Construction of a User Intent Signature is two folded as
Gyrus decouples capturing of the user intent and monitoring
of the network traffic. The UI part of the signature can be done
in very intuitive way. First, we arrange the UI as it would be
used for composing user-generated content. Then we identify
an input event that triggers traffic, and the associated text boxes
that contain user-intended text through a visual inspection of
the UI. Next, with the help of a tool called inspect.exe
from the UI Automation library, we can identify the tree-
structure and other details of the UI. Finally, this information is
used to construct the definition distinguishing the application
that receives input events.

The second part, on the network side, requires an under-
standing of the underlying protocol that the application uses
for network communication. In particular, we need to identify
which traffic we should intercept for monitoring, and discover
how the user intended text is formatted within the packet.
In this section we provide examples of applications that can
be protected by Gyrus, and we demonstrate how the User

Intent Signature simplifies the process for supporting a new
application.

B. Windows Live Mail

Application Specification Windows Live Mail is a stand-
alone email client, and the focus of our experiment is to use
Gyrus to make sure that any outgoing e-mails (i.e., through
SMTP) are intended by the user. The user interacts with a
compose window to write a message. The window has a Send
button that will be clicked when the user decides to send the
message. And there are several text boxes reserved for a list
of recipients (e.g., “To”, “Cc”, etc), and the message Subject.
Finally, the window has a rich text pane at the bottom, to
compose the content of the message.

Event and Intended Text The traffic will be generated
after clicking the Send button. On the event, Gyrus will extract
user-intended texts from the “To”, “Subject”, and message
body text panes.

Network Traffic Specification Outgoing traffic will be
sent through the SMTP protocol, and we are specifically
interested in the portion of the SMTP exchange responsible
for sending a message on it. All user-generated text will be
directly shown as the same text in the traffic, and Gyrus will
extract each field to query to Authorization DB.

Constructing Signature We show the signature for this
application in Example 1. The input event that triggers traffic
creation is pressing the Send button. So we set the EVENT
field to LCLICK. To distinguish the application window, we
set WINDOW field to the classname of the window, which is
ATH_Note in this case. To improve the event condition that
detects the application, we list all participating UI objects on
user intent on COND part. Starting from the event receiving
object, a Send button, the text box for recipients is the second
sibling, and the text box for the subject is the third sibling. So
we mark them as +2, +3, respectively. Locating the rich text
pane used for the message also requires tree-traversal. In our
scheme, it is located at P-1CCCCCCCCC. Since we need to
capture the contents of all text boxes and panes, the CAPTURE
field will assign temporary variables A, B, and C, to each one.
For the network monitor, we set protocol TYPE as SMTP and
METHOD as SEND, and bind each of the variables assigned
during the CAPTURE stage to protocol specific variables.

C. Digsby: Yahoo! Messenger & Twitter

Application Specification Digsby is a stand-alone client
for accessing multiple instant messenger and online social
network services within one application. In our experiments,
we focus on using Gyrus to protect the outgoing communi-
cation to Yahoo Messenger and Twitter. Communications to
other messenger/online social network services can be easily
covered as long as we have the corresponding proxy for
handling the network traffic. We would simply require one user
intent signature for each supported protocol. For both Yahoo
Messenger and Twitter, Digsby provides a simple GUI. The
user interacts with a messaging dialog window, which has a
text box for the message at the bottom. After typing a text
message, the user can send the message by pressing the ENTER
key while still focused in the message text box.

10

Event and Intended Text The traffic will be generated
after pressing the ENTER key. At this time, Gyrus will extract
user-intended text from the message text box at the bottom of
the dialog.

Network Traffic Specification For Yahoo Messenger,
outgoing traffic will be sent through the Yahoo! Messen-
ger (YMSG) protocol. Similar to the e-mail case, we are
only interested in the portion of the protocol that contains
the message. User-intended text will be encapsulated with
HTML tags for formatting, so Gyrus will extract the text and
then query the authorization DB. For Twitter, Digsby will
communicate with its server through an HTTP REST API.
The network monitor needs to watch for POST requests to
https://api.twitter.com/1/statuses/update.json. In this case, the
user-intended text will be encoded with URL encoding, so the
extracted text will be compared with the authorization DB after
decoding.

Constructing Signature Pressing the ENTER key af-
ter typing a message triggers outgoing network traf-
fic. Looking up the class name of the dialog window,
Digsby uses wxWindowClass for Yahoo Messenger and
wxWindowClassNR for Twitter. To improve the event con-
ditions of the UI structure, in addition to checking whether
current input is delivered to the text box for a message, we
also check if it has a pane object as its siblings. Since we
need to capture user-intended text from the message text box,
we assign the variable A to it for the CAPTURE field. On
the network side, we set the protocol type as YMSG and WEB
respectively. We set the METHOD field as SEND for YMSG,
and POST for Twitter. Variable A for the intended text will be
bound to a variable called message in YMSG, and status
for Twitter.

D. Web Applications

There are some common characteristics among the web
applications. Since we use Microsoft Internet Explorer 10 for
running all web applications, window class name cannot be
used to distinguish the application. Instead, we use the domain
name of currently active page as an identifier. In addition, the
protocol that the traffic is sent through is always HTTP(S)
in web applications. Therefore, monitored transactions can be
identified by associating a URL with a submit input event.
Variables for matching user-intended text will be bound as
HTTP parameters. In general, user-intended text in the packet
is URL-encoded.

E. Web-App: GMail

Application Specification The workflow of GMail is very
similar to that of Windows Live Mail. It has a Send button
on top of the compose screen11, along with To, Subject, and
message panes.

Network Traffic Specification On clicking the Send
button, an e-mail message will be sent through a POST method
URL https://mail.google.com/mail, only if it is set with URL
parameter act=sm. User-intended text is transmitted on the
to, subject, and body parameters of the POST request.

11We ran Gyrus with the old version of GMail composing UI which was
available until July 2013.

Constructing Signature The EVENT field is set to
LCLICK. For the application condition, the domain name
of mail.google.com will be used as a window identi-
fier, along with the relative positions of text boxes to the
Send button. For network traffic, the trap condition is set
to URL https://mail.google.com/mail with parameter condition
act=sm, and variables in the CAPTURE field will be matched
with POST parameters named to, subject and body.

F. Web-App: Facebook

Application Specification We focus on three transactions
in the Facebook application: status update, adding comment,
and sending message. For status update, a user types a message
in the text box, and clicks the Post button. This is similar
to the e-mail applications. For adding a comment and sending
message, a user presses the ENTER key after composing her
message, which is analogous to the Digsby example.

Network Traffic Specification For status updates, traffic
goes to https://www.facebook.com/ajax/updatestatus.php,
and the user’s text is transmitted in the POST variable
xhpc_message_text. Adding a comment goes through
https://www.facebook.com/ajax/ufi/add comment.php, and
uses the variable comment_text. Finally, sending a
message hits https://www.facebook.com/ajax/mercury/send
messages.php, and message_batch[0][body] is the
variable for intended text.

Constructing Signature The event will be LCLICK for
status updates, while it will be ENTER for the others. Identi-
fying the application and expected transaction for each event
is challenging because all three transactions are done in the
same window so we cannot distinguish each transaction using
only the domain name. Therefore we can distinguish each
transaction using additional UI structure checks. We link
camera, location, and emoticon menu icons as siblings for
distinguishing status update, link profile image and the shadow
text “Write a comment” for adding comment, and link an icon
name with “Add more friends to chat” and conversation history
objects as siblings for sending a chat message.

G. Web-App: Paypal

Application Specification Using Gyrus with Paypal en-
ables validation of the integrity of the amount of money sent
to someone. On the transferring money page, a user clicks
the button Continue after he types the username or e-mail
address of the recipient, and the amount of money to transfer
in the text boxes. The workflow is analogous to our e-mail
examples, with the primary difference being that in this case
the message is the amount of money to be transferred.

Network Traffic Specification After clicking
the Continue button, traffic will be sent to
https://www.paypal.com/us/cgi-bin/webscr with the POST
parameter cmd=_flow. User-intended text will be placed in
the POST parameters, email and amount.

Constructing Signature The event is set to LCLICK,
and the application condition will check domain
www.paypal.com and whether the UI tree-structure
has all participating text boxes as siblings. The traffic
trap condition for the Network Monitor should be set as

11

Activity % of Users
Send or read e-mail 88
Buy a product 71
Use a social networking site 67
Buy or make a reservation for travel 65
Do any banking online 61
Send instant messages 46
Pay to access or download digital content 43
Post a comment to online news groups 32
Use Twitter 16
Buy or sell stocks, bonds, or mutual funds 11

TABLE I. LIST OF ACTIVITIES WHERE GYRUS CAN HELP TO PROTECT
THE CORRESPONDING NETWORK TRANSACTIONS, FROM THE SURVEY

‘WHAT INTERNET USERS DO ONLINE [29]’, BY PEW RESEARCH CENTER.

https://www.paypal.com/us/cgi-bin/webscr, and its POST
parameter named cmd=_flow. Finally, variables for captured
text for amount of money and recipient will be linked to the
POST parameters amount and email.

H. Discussion

In cases where the same protocol is used by multiple
applications, we need one User-Intent Signature for each
application using that protocol. While this may seem a lot of
work, defining the correct behavior of applications of interest
is still much more scalable than endlessly (re)modeling (new)
attack/malware behavior.

As we’ve shown in the examples above, the language we
have devised not only allows us to easily support new applica-
tions, it also cleanly separates the per-application logic from
the core Gyrus framework. With this language, the process of
specifying the user intent signature for an application only
requires knowledge about the UI (and the structure of the
UI object tree exposed by the UI Automation library for that
application, which can be obtained using standard tools like
Inspect [25] from Microsoft) and some knowledge about the
network protocol used by the application, but no further details
about the internals of the application (as compared to if we
used VM introspection techniques to extract user intent).

Although it is very easy to construct a signature for
supporting a new application, managing a large collection of
signatures could cause overhead. However, we argue that its
overhead is far less than that of traditional IDS and anti-virus
software. While traditional approaches require following up all
newly discovered attacks, Gyrus defines user-intended, correct
system behaviors and is therefore attack-agnostic. The term
attack-agnostic here does not mean that Gyrus is immune to
all kinds of attacks. Gyrus only makes assumptions about the
attacker’s goal, but not how they achieve this goal. That is,
once a user intent signature is defined, no matter how the attack
evolves, the protection mechanism of Gyrus still works. In
this paper, we focus on protecting the integrity of text content
that is typed by the user, while other kinds of attacks such as
confidentiality of data are out of scope.

In terms of application support, Gyrus can generally sup-
port any application that sends user-generated text content from
the monitored host, if its network traffic has a direct or simple
mapping with on-screen text content. Table I shows the result
of survey that indicates what typical users are doing on the
Internet, done by Pew Internet. According to the survey results,
88% of users send e-mail, 67% of them send their text content

to online social network (OSN) sites, and 61% of users use
online banking. Moreover, all activities listed in Table I can be
supported by Gyrus. Clearly, Gyrus can protect a large portion
of day-to-day user activities on the Internet and can have a
large impact on security.

While the focus of Gyrus is text-based applications, it
can be easily extended to handle image/video attachments. In
particular, we can use Access Control Gadgets [30] to capture
the user’s intent to attach a particular file, compute a checksum
of that file and have our network proxy match any attached file
against the checksum. The only way this mechanism would fail
is when an attacker/malware knows a priori which file the user
will attach and changes it in advance, which we consider to
be unrealistic.

One limitation of Gyrus is that it cannot protect an appli-
cation where user-intended text is represented in a proprietary
format or in some complicated encoding on the traffic. At
least, not without significantly more effort to reverse engineer
the format. This can be a problem when extending Gyrus
to more general transactions such as writing data on the
filesystem. There have been recent and promising advances
in verifiable computation and tools such as probabilistically
checkable proofs (PCP) and fully-homomorphic encryption
(FHE) are becoming practical. When these technologies come
to practice, Gyrus can verify if the result of the traffic is
actually from user-intended input, by running application logic
along with these computation proof mechanisms. In addition,
for applications with complex encodings mentioned above, we
believe that it would be possible to have Gyrus perform the
slightly more complicated transformation on the captured user
intent and match the result with the outgoing traffic. Though
we should be careful not to expand the TCB too significantly,
adding the support of the specific transformations of some of
the most popular applications should be quite doable.

In our threat model, Gyrus only protects the integrity of
the text based on a user’s intent, and it does not protect
confidentiality. An attacker could steal a user’s credentials (e.g,
Cookie, ID/Password), and then perform protected transactions
on a different host without Gyrus protections. Thus, Gyrus
works better when the host is equipped with Hardware Security
Module (HSM) such as Trusted Platform Module (TPM) and
a Smartcard, and the server-side of the application supports
mutual authentication. However, while we consider the defense
against stealing credential to be out of scope, we would point
out that this problem can be solved by using Gyrus in dom-0
to intercept and modify the password that the user has just
entered (and so malware in dom-U can only get the incorrect
password), and correct the subsequent outgoing traffic for the
actual login to use the unmodified, correct password.

Finally, a point worth noting here is that like any other
system that tries to model benign behavior, Gyrus is vulnerable
to false positives caused by errors in the user intent signatures
(false negatives are also possible, but should be a lesser
concern, as we will argue in the next section); however, false
positives only happen when we fail to specify in our signatures
some of the user actions that signifies the intent to generate
outgoing traffic, or if our signatures specify a wrong way for
capturing user intent. We believe both scenarios should be
rare, since for usability purposes, an application should not
have too much variance in its UI, nor should it provide too

12

many ways for performing the same operation; similarly, the
correctness of the way we capture user intent for an application
should be easy to establish with simple testing and this should
suffice to guarantee we will continue to capture user intent
correctly, unless the application changes its UI (which, again,
for usability reasons, is less likely to happen).

VI. EVALUATION

In this section, we present the results of our evaluation on
the security, usability and performance of Gyrus when using
it to protect the applications studied in Section V.

A. Security

New security frameworks should be secure against both
current ant future attacks. Here, we consider both scenarios
for Gyrus by running existing attack samples and by analyzing
the framework’s security properties.

1) Resilience Against Existing Attacks: Gyrus is attack-
agnostic by design, however, to demonstrate that we imple-
mented the system correctly, we tested Gyrus’ ability to stop
attacks against the specific applications discussed in Sect. V.
For Windows Live Mail, we executed Win32:MassMail-A,
a mail spammer malware, while the mail client is un-
der Gyrus’ protection. The dom-0 network monitor success-
fully catches, and blocks all outgoing SMTP traffic gener-
ated by the malware. For Yahoo! Messenger protocol, we
ran ApplicUnwnt.Win32.SpamTool.Agent.˜BAAE, a
messenger spamming malware. All of the messages generated
by this malware are blocked by Gyrus. For Facebook, we exe-
cuted a comment spamming malware TROJ_GEN.RFFH1G1,
and it has no success in sending out attack traffic. We have
also tested the effectiveness of Gyrus against Javascript-based
attacks (like XSS, CSRF) targeting web applications. In partic-
ular, we injected forged Javascript code that automatically sub-
mits malicious content into the GMail, Facebook and Paypal
pages; in all cases, Gyrus successfully blocked all malicious
traffic from these attacks. Finally, for each tested application,
we tried to perform the normal operations protected by Gyrus
with the corresponding attacks running in the background. In
each case, Gyrus allows the legitimate, user generated traffic
to go through while stopping all attacks.

2) Resilience Against Future Attacks: Next, we will evalu-
ate how well Gyrus can handle future attacks designed against
it. All security guarantees will be void if assumptions in
our threat model are violated. However, we believe those are
standard assumptions widely accepted by the security commu-
nity, thus we will not discuss violations of the assumptions.
However, we do note that even though existing hypervisors
are becoming more complicated, it is possible – and, in fact,
encouraged – to build custom hypervisors or security operating
systems for use with Gyrus to achieve higher assurance [20],
[5], [40].

The next avenue for attack is against the UI monitor that
runs in the untrusted dom-U. However, we believe Gyrus is
quite robust against errors in the UI monitor. First of all,
thanks to the secure overlay, attackers are limited to misplacing
user-generated, albeit unintended content in traffic allowed by
Gyrus (e.g., switching the subject and content of an email, take
users comment to one story on Facebook as his/her outgoing

comment on another story), and thanks to our policy of only
displaying on the overlay the content of the window which
current have focus, the mistakenly sent out content must be
from the “correct” application. Also, we believe we can further
harden Gyrus against such attacks by specifying a restriction
on the position of the content to be sent out in relation to the
event that triggers the outgoing traffic (e.g., the text displayed
on the overlay cannot be too far away from the coordinate of
the mouse click). A compromised UI monitor can also mislead
Gyrus to believe a mouse click signifies the user’s intent to
send out something (i.e. stealing a click); however, once again
thanks to the secure overlay, the unintended outgoing traffic
will have its content entirely entered by the user (i.e., this
could cause a premature output of the content). Therefore, the
attacker will have very little control over what is sent. Finally,
we believe our policy concerning what kind of update to text
boxes the UI monitor can report provides very good protection
to data that are currently off-screen.

Similarly, poorly written user intent signatures can be
problematic; however, thanks to the use of the secure overlay,
we believe problems with a user intent signature are limited to
mistaking hardware events as user intent to send something,
and will have the same adverse effect as a misbehaving UI
monitor stealing a click. In conclusion, we believe the secure
overlay (and the WYSIWYS policy) leaves an attacker with
very limited options for attacking Gyrus. Anything sent out
by a protected application using a targeted protocol must be
typed, and seen by the user. All the attacker can do is to use
content intended for one purpose (under the same application)
for another, and the cases where this can cause a user any real
harm should be very rare.

B. Usability

From our experience of protecting the applications stud-
ied in Section V, Gyrus has no noticeable effect on their
usability. In Gyrus, user-interaction is mediated by the internal
components of Gyrus: Input handler, and Secure Overlay. For
interposing user input before delivering it to the application,
Gyrus does not incur noticeable delay (see Section VI-C1 for
the evaluation results). Since Gyrus only overlays text boxes in
our target applications, it will not change the user’s workflow
or the look-and-feel of the other parts of the application.
Furthermore, Gyrus displays (on the secure overlay) text
with the same font face, size, and color as the underlying
application. Finally, we have confirmed that the edit box drawn
by Gyrus not only supports simple text editing like typing,
selection, and copy & paste, but also application-specific text
editing features like auto-completion and spelling correction.
So we are confident that Gyrus will not affect the user’s
experience with the application being monitored. Furthermore,
since Gyrus only checks (and potentially blocks) traffic that
perform specific actions under specific protocols of interest
12, our experience shows that Gyrus does not interfere with
background networking programs such as BitTorrent and RSS
feeds. Gyrus can also handle scheduled jobs that have a time
gap between a user’s interaction and the resulting generation of
network traffic, thanks to our use of the Authorization DB for
the capturing of user intent from the actual inspection of traffic.

12For example, Gyrus only checks HTTP traffic for sending emails under
GMail, but not that for reading emails.

13

Actions Average STDV Median Max
Typing 39ms 21ms 34ms 128ms
ENTER 19ms 6ms 17ms 43ms
LCLICK 43ms 15ms 41ms 79ms

Focus Change 21ms 19ms 17ms 158ms
Move & Resize 21ms 16ms 16ms 85ms

TABLE II. LATENCY INTRODUCED BY GYRUS WHILE PROCESSING
THE INPUT. USER-INTERACTION DATA WAS COLLECTED DURING THE USE

CASE EVALUATION.

Cases KVM Gyrus Overhead
Single (A) 101.7ms 102.3ms +0.6ms (.5%)
Single (B) 31.20ms 32.30ms +1.1ms (3.5%)
Web Page 897.5ms 951.3ms +53.8ms (6%)
Download 51.1MB/s 49.3MB/s –1.8MB/s (3.5%)

TABLE III. NETWORK LATENCY FOR HTTP CONNECTION.

For example, in the case of an e-mail application, if the system
has no connectivity to the Internet, the mail will be queued on
the scheduler, and later this scheduler will generate network
traffic when connectivity is re-established. Our experiments
show that Gyrus can handle this situation correctly and allow
the delayed email as a user would expect.

C. Performance

In this section, we present our results of measuring the two
kinds of delay that Gyrus can cause: delay in processing user
input through the keyboard/mouse, and delay in sending out
network traffic. All the experiments presented in this section
are performed on a commodity laptop: a Lenovo Thinkpad-
T520, equipped with a dual-core Intel Core i5 2520m and 8GB
of RAM. The dom-U runs 3 logical cores with 7GB of RAM,
while dom-0 has 1 logical core and 1GB of RAM.

1) Interaction Overhead: In the worst case, on a system
protected by Gyrus, the user will experience the following
delay for every keyboard/mouse input: first, the Central Control
will need to query the UI monitor in dom-U to see if this event
signifies the user’s intent to send out something, secondly, the
secure overlay will have to wait for the UI monitor to provide
any information about how this input changes the display. Both
of these will add to the time between the user press a key/click
to mouse to when he/she can see the effect of his/her input on
the secure overlay. To determine if this turn around time for
processing user input under Gyrus is still in acceptable range,
we performed the following study: first, we typed a document
without generating any input that signifies an intent to send
out network traffic, and measured the time between the Central
Control first observe each input to the time the secure overlay
is updated to reflect the input; second, we measured the same
turn around time for mouse events that result in focus change,
resize and movement of the window of a target application.
Finally, we also measured the time needed for the UI monitor
to confirm that an input event signifies user intent to send out
traffic. The results of our experiments are presented in Table II.
To provide some context for interpreting the results, prior
research suggests that acceptable range of such turn around
time for interaction with human is 50-150ms [35]. Thus, our
experiments show that on average case, users can smoothly
interact with a system protected by Gyrus.

2) Network Latency: We have also measured the network
latency caused by Gyrus (as compared to the system that runs

Cases KVM Gyrus Overhead
Single Request 90.72ms 94.50ms +3.78ms (4%)

Download 37.40MB/s 35.23MB/s –2.17MB/s (5.8%)

TABLE IV. NETWORK LATENCY FOR HTTPS CONNECTION (WITH
MAN-IN-THE-MIDDLE PROXY).

KVM without Gyrus) for three different cases: 1) the time to
establish an HTTP connection (and we used two test sites), 2)
the time to load a web page with dynamic content, measured
by The Chromium’s Page Benchmark extension [37], 3)
the effective bandwidth of a system, obtained by measuring
the time to download a 550MB disk image from the
Debian repository through HTTP. To measuring the overhead
introduced by our Man-In-The-Middle (MITM) proxy for
HTTPS connections, we did 2 tests: 1) download 15KB of
web-page data from a public website, and 2) download a
32MB file from a remote HTTPS server. All experiments are
repeated 10 times, and the average results are presented in
Table III & IV.

Comparing the results from a KVM Guest versus Gyrus
running on it, Gyrus only introduces around 1ms of single
response delay, less than 6% (53.8ms) of delay for web
page loading, and less than 4% overhead on the network
bandwidth, for HTTP connection. For HTTPS, there exists
CPU time overhead from an additional connection per each
session for MITM on establishing, encrypting, and decrypting
the contents. From our experiment, it incurs 4ms of delay on
getting access to a single web-page data, and adds less than
6% of bandwidth overhead on downloading of file content.
Evaluation results for the network latency shows that Gyrus
has very little overhead, at worst 6% on both bandwidth and
loading a webpage.

VII. FUTURE WORK AND CONCLUSIONS

There are many potentially fruitful areas for future work.
The first is to simplify the process of supporting a new
application by automating the analysis and generation of the UI
and traffic signatures. Extending Gyrus’ output monitoring to
include disk transactions would allow Gyrus to support non-
networked applications such as word processors. Integrating
with a delegated computation verifier would allow Gyrus to
support a broader range of applications. In addition, Gyrus
could verify that the input to a computation verifier is actually
from the user.

Another interesting future direction would be to implement
Gyrus on other platforms. The current design can be adapted
to work in a cloud computing model where the remote host
is an instance in an IaaS cloud. For platforms where it is
hard to deploy our current virtualization-based design (e.g.,
mobile devices), one could explore modifying the threat model
to only defend against malicious applications, assuming that
the underlying operating system is clean. Under this new
threat model, it may be possible to achieve “what you see
is what you send” by implementing a similar defense strategy
as a component inside the platform’s runtime framework (e.g.,
Android Dalvik).

To conclude, in this paper we introduced the Gyrus frame-
work and showed how it can be used to distinguish between

14

human and malware generated network traffic for a variety of
applications. By combining the secure monitoring of hardware
events with an analysis leveraging the accessibility interface
within dom-U, we linked human input to observed network
traffic and used this information to make security decisions.
Using Gyrus, we demonstrated how to stop malicious activities
that manipulate the host machine to send malicious traffic,
such as spam, social network impersonation attacks, and online
financial services fraud. Our evaluation demonstrated that
Gyrus successfully stops modern malware, and our analysis
shows that it would be very challenging for future attacks to
defeat it. Finally, our performance analysis shows that Gyrus
is a viable option for deployment on desktop computers with
regular user interaction. Gyrus fills an important gap, enabling
security policies that consider user intent in determining the
legitimacy of network traffic.

ACKNOWLEDGMENTS

The authors would like to thank to the anonymous re-
viewers, and our shepherd, Dongyan Xu, for their help and
feedback. This material is based upon work supported in part
by the National Science Foundation under Grants No. CNS-
1017265, CNS-0831300, and CNS-1149051, by the Office
of Naval Research under Grant No. N000140911042, by the
Department of Homeland Security under contract No. N66001-
12-C-0133, and by the United States Air Force under Contract
No. FA8650-10-C-7025. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the
National Science Foundation, the Office of Naval Research,
the Department of Homeland Security, or the United States
Air Force.

REFERENCES

[1] Alexa Internet. Alexa - Top Sites in United States. http://www.alexa.
com/topsites/countries/US.

[2] Android Open Source Project. Dalvik Technical Information. https:
//source.android.com/tech/dalvik/index.html.

[3] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: a
new characterization of np. J. ACM, 45(1):70–122, January 1998.

[4] Kai-Min Chung, Yael Kalai, and Salil Vadhan. Improved delegation of
computation using fully homomorphic encryption. In Proceedings of
the 30th annual conference on Advances in cryptology, CRYPTO’10,
pages 483–501, Berlin, Heidelberg, 2010. Springer-Verlag.

[5] Patrick Colp, Mihir Nanavati, Jun Zhu, William Aiello, George Coker,
Tim Deegan, Peter Loscocco, and Andrew Warfield. Breaking up
is hard to do: security and functionality in a commodity hypervisor.
In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles, SOSP ’11, pages 189–202, New York, NY, USA,
2011. ACM.

[6] Weidong Cui, Randy H. Katz, and Wai tian Tan. Design and Implemen-
tation of an Extrusion-based Break-In Detector for Personal Computers.
In Proc. of the Annual Computer Security Applications Conference,
2005.

[7] J. Elson and A. Cerpa. RFC 3507 - Internet Content Adaptation Protocol
(ICAP). http://www.ietf.org/rfc/rfc3507.txt.

[8] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan
Boneh. Terra: A Virtual Machine-Based Platform for Trusted Com-
puting. In Proceedings of ACM Symposium on Operating Systems
Principles (SOSP), 2003.

[9] Tal Garfinkel and Mendel Rosenblum. A Virtual Machine Introspection
Based Architecture for Intrusion Detection. In Proceedings of the
Network and Distributed Systems Security Symposium, 2003.

[10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive
verifiable computing: outsourcing computation to untrusted workers.
In Proceedings of the 30th annual conference on Advances in cryptol-
ogy, CRYPTO’10, pages 465–482, Berlin, Heidelberg, 2010. Springer-
Verlag.

[11] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis,
Stanford University, 2009. crypto.stanford.edu/craig.

[12] GNOME DEV CENTER. ATK - Accessibility Toolkit. https://
developer.gnome.org/atk/2.8/.

[13] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of
interactive proof systems. SIAM J. Comput., 18(1):186–208, February
1989.

[14] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Dele-
gating computation: interactive proofs for muggles. In Proceedings of
the 40th annual ACM symposium on Theory of computing, STOC ’08,
pages 113–122, New York, NY, USA, 2008. ACM.

[15] Ramakrishna Gummadi, Hari Balakrishnan, Petros Maniatis, and Sylvia
Ratnasamy. Not-a-Bot (NAB): Improving Service Availability in the
Face of Botnet Attacks. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2009.

[16] Michael Hohmuth, Michael Peter, Hermann Hartig, and Jonathan S.
Shapiro. Reducing TCB size by using untrusted components – small
kernels versus virtual machine monitors. In Proc. of the ACM SIGOPS
European Workshop, 2004.

[17] IMSpector. IMSpector: Instant Messenger Proxy Service. http://www.
imspector.org/wordpress/.

[18] Xuxian Jiang, Xinyuan Wang, and Dongyan Xu. Stealthy Malware De-
tection Through VMM-Based “Out-of-the-Box” Semantic View Recon-
struction. In Proc. of the ACM Conf. on Computer and Communications
Security, 2007.

[19] Ashlesha Joshi, Samuel T. King, George W. Dunlap, and Peter M.
Chen. Detecting past and present intrusions through vulnerability-
specific predicates. In Proceedings of ACM Symposium on Operating
Systems Principles (SOSP), pages 1–15, 2005.

[20] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal
Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon
Winwood. sel4: formal verification of an os kernel. In Proceedings of
the ACM SIGOPS 22nd symposium on Operating systems principles,
SOSP ’09, pages 207–220, New York, NY, USA, 2009. ACM.

[21] Mac OSX Developer Center. NSAccessibility Protocol Reference.
https://developer.apple.com/library/mac/#documentation/Cocoa/
Reference/ApplicationKit/Protocols/NSAccessibility Protocol/
Reference/Reference.html.

[22] Stuart E. Madnick and John J. Donovan. Application and Analysis
of The Virtual Machine Approach to Information System Security and
Isolation. In Proc of the Workshop on Virtual Computer Systems, 1973.

[23] Lorenzo Martignoni, Pongsin Poosankam, Matei Zaharia, Jun Han,
Stephen McCamant, Dawn Song, Vern Paxson, Adrian Perrig, Scott
Shenker, and Ion Stoica. Cloud terminal: secure access to sensitive ap-
plications from untrusted systems. In Proceedings of the 2012 USENIX
conference on Annual Technical Conference, USENIX ATC’12, pages
14–14, Berkeley, CA, USA, 2012. USENIX Association.

[24] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam
Datta, Virgil Gligor, and Adrian Perrig. Trustvisor: Efficient tcb
reduction and attestation. In Proceedings of the 2010 IEEE Symposium
on Security and Privacy, SP ’10, pages 143–158, Washington, DC,
USA, 2010. IEEE Computer Society.

[25] Microsoft Developer Network. Inspect. http://msdn.microsoft.com/
en-us/library/windows/desktop/dd318521(v=vs.85).aspx.

[26] Microsoft Developer Network. UI Automation Overview. http://msdn.
microsoft.com/en-us/library/ms747327.aspx.

[27] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinoc-
chio: Nearly practical verifiable computation. In IEEE Symposium on
Security and Privacy, pages 238–252, 2013.

[28] Pew Internet. What Internet Users Do On A Typical Day.
http://www.pewinternet.org/Static-Pages/Trend-Data-(Adults)
/Online-Activities-Daily.aspx.

[29] Pew Internet. What Internet Users Do Online. http://www.pewinternet.
org/Static-Pages/Trend-Data-(Adults)/Online-Activites-Total.aspx.

15

[30] Franziska Roesner, Tadayoshi Kohno, Alexander Moshchuk, Bryan
Parno, Helen J. Wang, and Crispin Cowan. User-Driven Access Control:
Rethinking Permission Granting in Modern Operating Systems. In
Proceedings of the IEEE Symposium on Security and Privacy, 2012.

[31] Srinath Setty, Richard McPherson, Andrew J. Blumberg, and Michael
Walfish. Making argument systems for outsourced computation practical
(sometimes). In Proceedings of the Network and Distributed System
Security Symposium (NDSS), 2012.

[32] Srinath Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun, Andrew J.
Blumberg, and Michael Walfish. Taking proof-based verified computa-
tion a few steps closer to practicality. In In USENIX Security, 2012.

[33] Dave Shackleford. Blind as a Bat? Supporting Packet Decryption
for Security Scanning. http://www.sans.org/reading room/analysts
program/vss-BlindasaBat.pdf.

[34] Takahiro Shinagawa, Hideki Eiraku, Kouichi Tanimoto, Kazumasa
Omote, Shoichi Hasegawa, Takashi Horie, Manabu Hirano, Kenichi
Kourai, Yoshihiro Oyama, Eiji Kawai, Kenji Kono, Shigeru Chiba,
Yasushi Shinjo, and Kazuhiko Kato. Bitvisor: a thin hypervisor for
enforcing i/o device security. In Proceedings of the 2009 ACM
SIGPLAN/SIGOPS international conference on Virtual execution envi-

ronments, VEE ’09, pages 121–130, New York, NY, USA, 2009. ACM.
[35] Ben Shneiderman. Designing the User Interface: Strategies for Effective

Human-Computer Interaction. Addison-Wesley, fourth edition, 2005.
[36] Steve Slaven. xautomation. http://hoopajoo.net/projects/xautomation.

html.
[37] The Chromium Projects. Benchmarking Extension.

http://www.chromium.org/developers/design-documents/extensions/
how-the-extension-system-works/chrome-benchmarking-extension.

[38] Stef Walter. Proxsmtp: An smtp filter. http://memberwebs.com/stef/
software/proxsmtp/.

[39] Duane Wessels, Henrik Nordström, Alex Rousskov, Adrian Chadd,
Robert Collins, Guido Serassio, Steven Wilton, and Chemolli Francesco.
Squid: Optimising web delivery. http://www.squid-cache.org/.

[40] Chiachih Wu, Zhi Wang, and Xuxian Jiang. Taming Hosted Hypervisors
with (Mostly) Deprivileged Execution. In Proceedings of the Network
and Distributed System Security Symposium (NDSS), San Diego, CA,
February 2013.

16

