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Abstract

Several syntactic-based automatic worm signature gen-
erators, e.g., Polygraph, have recently been proposed.
These systems typically assume that a set of suspicious flows
are provided by a flow classifier, e.g., a honeynet or an in-
trusion detection system, that often introduces “noise” due
to difficulties and imprecision in flow classification. The al-
gorithms for extracting the worm signatures from the flow
data are designed to cope with the noise. It has been re-
ported that these systems can handle a fairly high noise
level, e.g., 80% for Polygraph. In this paper, we show that
if noise is introduced deliberately to mislead a worm sig-
nature generator, a much lower noise level, e.g., 50%, can
already prevent the system from reliably generating useful
worm signatures. Using Polygraph as a case study, we de-
scribe a new and general class of attacks whereby a worm
can combine polymorphism and misleading behavior to in-
tentionally pollute the dataset of suspicious flows during its
propagation and successfully mislead the automatic signa-
ture generation process. This study suggests that unless an
accurate and robust flow classification process is in place,
automatic syntactic-based signature generators are vulner-
able to such noise injection attacks.

1 Introduction

Signature generation is a key step in the defense against
worm propagation. Most of the signatures used by fire-
walls or signature-based intrusion detection systems (IDS)
are created using a manual analysis of worm traffic flows.
This is usually a time-consuming process, and thus cannot
keep pace with rapidly spreading worms. Manual analy-
sis becomes even harder and more time-consuming if the
worms use metamorphism and polymorphism techniques.
Automatic signature generation is a promising alternative.
The goal is to automatically, and thus very quickly, extract
the invariant parts of a worm as its signature. Early ap-

proaches [8, 6, 21] are based on syntactic analysis of sus-
picious traffic flows. These approaches have limited abil-
ities to extract reliable signatures from truly polymorphic
worms. Newsome et al. recently proposed two approaches
to address this problem [14, 15]. Polygraph [14] is based
on syntactic analysis of suspicious traffic flows, and im-
plements three different types of signature generation algo-
rithms. Taint analysis [15] is a semantic analysis approach
based on the execution of possible vulnerable applications
inside a protected environment.

In this paper, we will focus on signature generation
systems that aim at automatically extracting and deploy-
ing signatures that could be used by firewalls or signature-
based network IDS. Other automatic signature generators
are based on the extraction of host-based signatures that
need to access the execution or application environment
they are trying to protect in order to be effective, as pro-
posed for example in [10]. We do not discuss these systems
here. We will examine the abilities of syntactic-based au-
tomatic signature generators in the face of advanced poly-
morphic worms that not only spread using a high level of
polymorphism but also deliberately mislead the signature
generation process. Using Polygraph [14] as a case study,
we introduce a new and general class of attacks whereby a
worm can combine polymorphism and misleading behav-
ior in order to prevent the generation of reliable signatures.
We will show that this result can be achieved by intention-
ally injecting noise into the dataset of suspicious flows used
by syntactic-based signature generators to extract the sig-
natures. We will present a specific attack that can mislead
Polygraph, and then we will discuss how such noise injec-
tion attacks are general in that different attacks can be de-
vised to mislead other recently proposed automatic signa-
ture generators.

The system architecture of Polygraph includes a flow
classifier module and a signature generator module [14].
The flow classifier collects the suspicious flows that will be
used to extract the signatures. The authors assumed that
the flow classifier can be imperfect and that it can introduce



some noise into the pool of suspicious flows, regardless of
the classification technique used by the flow classifier. The
authors then proposed some techniques to cope with the
noise during the signature generation process. This design
characteristic is common to most of the syntactic-based au-
tomatic signature generators. That is, little or no attention
is paid to filtering the noise during the suspicious flow gath-
ering process. We believe this is a serious shortcoming that
can be exploited by combining polymorphism and mislead-
ing behavior. We will show how a misleading polymorphic
worm can create and send fake anomalous flows during its
propagation to deliberately pollute the set of flows used to
extract the signatures. Polygraph’s authors state that their
system is resilient to (at least) 80% of noise into the set of
suspicious flows [14]. We will show that by constructing
well-crafted fake anomalous flows, a worm can mislead the
signature generation algorithms by injecting much less than
80% of noise into the set of suspicious flows, thus prevent-
ing the generation of useful signatures. We would like to
emphasize that although we demonstrate the effects of the
noise injection attack on Polygraph, which is used as a case
study here, it is a general attack on all the syntactic-based
signature generation systems proposed in the literature be-
cause they do not addresses directly the problem of inten-
tional pollution of the dataset of suspicious flows. In par-
ticular, we will discuss how the attack can be generalized to
defeat other recent automatic signature generation systems,
and why it cannot always be prevented by even semantic-
based approaches similar to [15].

Our work is structured as follows. In Section 2 we
present a technique the worm could apply to pollute the sus-
picious flow pool. We show the effect of the attack using
Polygraph as a case study and then discuss the effects on
other signature generators. We present results obtained by
simulating the noise injection attack against Polygraph in
Section 3, and then we discuss them in Section 4. Section 5
summarizes the related work and then we briefly conclude
in section 6.

2 Noise Injection Attack

Noise injection attack works by polluting the set of traffic
flows, or suspicious flow pool [6, 14], used by automatic sig-
nature generators in the signature extraction process. The
attack aims to mislead the signature generation algorithms
by injecting well-crafted noise to prevent the generation of
useful signatures. In the following sections we briefly sur-
vey the most common techniques used by a “flow classi-
fier” to collect the suspicious flows. We then show how the
worm can inject noise without a priori knowledge about the
classification technique in use. To accomplish the task of
misleading the signature generation algorithms, the noise
has to be crafted in a suitable manner. Different noise in-

jection attacks can be implemented by crafting the noise
in different manners. We first demonstrate how this attack
can be implemented against Polygraph [14], and then ana-
lyze the possible effects of noise injection attack on Nemean
[28], another recently proposed automatic signature gener-
ator. Different implementations of the attack can be devised
to mislead other signature generators.

2.1 Collecting Suspicious Flows

A few techniques have been proposed to accomplish the
task of collecting the suspicious flows. Honeycomb [8] uses
a simulated honeynet. Any flow sent towards the honeynet
is inserted into the suspicious flow pool. Nemean [28] uses
a similar approach combining real and simulated hosts. In
[25] a double honeynet is proposed. In this case a first-layer
honeynet is made of real hosts. Whenever a first-layer hon-
eypot is infected by a worm, its outgoing traffic is redirected
to a second-layer simulated honeynet and inserted into the
suspicious flow pool. Autograph [6] implements a classi-
fication approach based on port-scanning detection. Each
valid flow sent by a scanner to a valid IP address is inserted
into the suspicious flow pool. Anomaly-based IDS can also
be used as flow classifiers. For example, PAYL [27] uses the
byte frequency distribution of the normal packets to detect
anomalies, and can be used as a flow classifier.

There are other techniques that are not considered in
our study. Earlybird [21] extracts all the possible sub-
strings of a given fixed length β from each packet to com-
pute the content prevalence. β cannot be reduced to just
a few bytes due to computational complexity and memory
consumption problems. As shown in [14], a polymorphic
worm can contain invariants that are just two or three bytes
long, potentially evading Earlybird. Since our study fo-
cuses on misleading polymorphic worms that try to mis-
lead signature generators, we must assume that the flow
classifier can detect polymorphic worm instances as sus-
picious flows. Approaches for run-time detection of in-
jected code, e.g., [15, 10, 5, 1] are not considered because
they are largely limited to application-based worms (e.g.,
CodeRed[12], Slammer[11], etc.) and are not effective
against OS-based worms (e.g., Sasser[17], Zotob[18], etc.).
We are concerned with general-purpose worms. More im-
portantly, these approaches are “host-based” while almost
all the automatic signature generators presented in literature
use “traffic-based” flow classifiers.

2.2 Injecting Noise into The Suspicious
Flow Pool

Suppose a worm has infected a host in network A and
is now trying to infect some hosts in network B. Suppose
also that each time the worm sends a polymorphic instance



to a host in B, it also sends a fake anomalous flow to the
same host, as shown in Figure 1. Section 2.3.5 provides de-
tails on the creation of fake anomalous flows. For now con-
sider that the fake anomalous flow does not need to exploit
the vulnerability and thus can be crafted in a very flexible
manner to appear like the real worm in all but the invari-
ant parts (which are necessary to exploit the vulnerability).
For example a fake anomalous flow can be crafted so that it
contains the same protocol framework as the worm (e.g., a
GET request) and the same byte frequency distribution, and
at the same time not containing the real worm’s invariants.

Suppose the network B is monitored by a “traffic-based”
flow classifier. The worm and its fake anomalous flow must
both be stored in the suspicious flow pool in order to mis-
lead the signature generation algorithm. This is possible
with the flow classifiers we consider (see Section 2.1). We
describe how this can be accomplished with each of the flow
classifiers below:

• Honeynet. In this case the vulnerable host that the
worm is trying to infect can be a real or simulated hon-
eypot. Since both the real worm and the fake anoma-
lous flow are sent to the same destination at (roughly)
the same time, they will both be considered suspicious
by the honeypot and stored into the suspicious flow
pool.

• Double honeynet. In this case the real worm will in-
fect a first-layer honeypot, whereas the fake anomalous
flow will not, and will be disregarded. However, only
the outgoing traffic will be redirected to the second-
layer simulated honeypot and stored into the suspi-
cious flow pool. Given that the outgoing traffic gen-
erated by the worm instance at the first-layer honeypot
will again contain both a real worm flow and another
fake anomalous flow, they will be stored into the sus-
picious flow pool together.

• Port-scanning detection. If the worm scans more than
s unused IP addresses, the source of the scanning (i.e.,
the infected host in A) will be considered a scanner.
Therefore, each flow sent by the infected host in A
towards B after the scanning phase will be consid-
ered suspicious. Given that the real worm and the fake
anomalous flow originate from the same source host,
they will be both inserted into the suspicious flow pool.

• Byte frequency-based classifier. The fake anomalous
flow can be easily crafted to match the byte frequency
distribution of the real worm flow (as discussed in Sec-
tion 2.3.5). This means that if the real worm flow is
flagged as anomalous, its fake anomalous flow will
very likely be flagged as anomalous, too. Thus, both
the worm and the fake anomalous flow will be stored
into the suspicious flow pool.

Figure 1: Worm propagation

Figure 2: Structure of the flows (simplified)

Note that each copy of the worm could craft and send
more than one fake anomalous flow at the same time. In
this case the real worm flow and all its fake anomalous flows
will be inserted into the suspicious flow pool together. The
discussion above suggests that without a semantic-based
analysis it is not possible to distinguish between the real
worm flow and its fake anomalous flows.

2.3 Crafting the Noise: A Case Study Us-
ing Polygraph

In this section we present a noise injection attack devised
to mislead Polygraph [14]. In order to explain how the noise
can be crafted to mislead Polygraph we first describe the
high level structure of a polymorphic worm and how Poly-
graph extracts worm signatures.

2.3.1 High Level Structure of A Polymorphic Worm

As discussed in [7] and in [14], a polymorphic worm is
made of the following components:

• Protocol framework. In many cases the vulnerabil-
ity is associated with a particular execution path in the
application code. In turn, this execution path can be ac-
tivated by one (or just a few) particular request type(s).
Therefore, the protocol framework is usually common
to all the worm variants.

• Exploit’s invariant bytes. These bytes have a fixed
value that cannot be changed because they are abso-
lutely necessary for the exploit to work.

• Wildcard bytes. These bytes can assume any value
without affecting the exploit.



• Worm’s body. It contains the instructions the worm
executes once the vulnerability has been exploited. If
the worm uses a good polymorphic engine, these bytes
can assume different values in each worm copy.

• Polymorphic decryptor. It contains the first instruc-
tions to be executed after the vulnerability has been
exploited. The polymorphic decryptor decodes the
worm’s body and then jumps to it. The polymorphic
decryptor itself can change.

Note that this is a simplified view. Depending on the
particular vulnerability exploited by the worm, the proto-
col framework and the exploit’s supposedly invariant bytes
may assume many different values. This means that there
can actually be no invariants, given that each worm instance
could use one out of many different values.

2.3.2 Polygraph’s Signature Generation Module

Polygraph consists of several modules [14]. A flow classi-
fier performs flow reconstruction and classification on pack-
ets received from the network. The flows deemed suspi-
cious are stored into a suspicious flow pool, whereas the
flows deemed innocuous are stored into an innocuous flow
pool. The signature generator module uses both pools dur-
ing the signature generation process. The objective of Poly-
graph [14] is to extract the invariant parts of a polymorphic
worm using three different signature generation algorithms.
We briefly summarize how these algorithms work.

• Conjunction signatures. During the preprocessing
phase the substrings common to all the flows in the
suspicious flow pool are extracted. These substrings
are called tokens. A conjunction signature is made of
an unordered set of tokens. A flow matches the signa-
ture if it contains all the tokens in the signature.

• Token-Subsequence signature. As with the conjunc-
tion signatures, the tokens in common among all the
suspicious flows are extracted. Then, each suspicious
flow is rewritten as a sequence of tokens separated by
a special character γ. A string alignment algorithm
creates an ordered list of tokens that is present in all
the suspicious flows. A token-subsequence signature
consists of the obtained ordered list of tokens. A flow
matches the signature if the ordered sequence of tokens
is in the flow.

• Bayes signatures. All the tokens of a minimum
length α that are common to at least K out of the
total number N of suspicious flows are extracted.
Then, for each token ti, p(ti|Suspicious flow) and
p(ti|Innocuous flow), the probabilities of finding the

token in a suspicious flow and in an innocuous flow, re-
spectively, are computed. A score

λi = log

[
p(ti|Suspicious flow)
p(ti|Innocuous flow)

]

is then assigned to each token ti. The probability
p(ti|Suspicious flow) is estimated over the suspi-
cious flow pool, whereas p(ti|Innocuous flow) is
estimated over the innocuous flow pool. During the
match process, the scores λi for the tokens ti contained
in the flow under test are summed. The flow matches
the signature if the obtained total score Λ exceeds a
precomputed threshold θ. This threshold is computed
during the signature generation process. Given a pre-
determined acceptable percentage of false positives r,
θ is chosen so that the signature produces less than r
false positives and minimizes the number of false neg-
atives at the same time.

The conjunction and token-subsequence signatures are
not resilient to noise in the suspicious flow pool. For exam-
ple, if just one noise flow that does not contain the worm’s
invariants appears in the suspicious flow pool, the worm’s
invariants will not be extracted during the preprocessing
phase because they are not present in all of the flows. For
this reason Polygraph [14] applies a hierarchical clustering
algorithm during the generation of conjunction and token-
subsequence signatures in an attempt to isolate the worm
flows from the noise. Each cluster consists of a set of sus-
picious flows {a1, a2, .., an}, and the signature sa extracted
from the set. That is, each cluster can be represented as a
pair ({a1, a2, .., an}, sa). The similarity between two clus-
ters is based on the specificity of the signatures, namely,
the number of false positives (measured over the innocuous
flow pool) produced by the new signature obtained by merg-
ing the two clusters. For example, the similarity between
two clusters ({a1, a2, .., an}, sa) and ({b1, b2, .., bm}, sb)
is computed as the number of false positives produced by
the signature sa,b extracted from the merged set of flows
{a1, a2, .., an, b1, b2, .., bm}. The algorithm starts with N
clusters, one for each suspicious flow, and then proceeds it-
eratively to merge pairs of the (remaining) clusters. At each
step, only the one pair of clusters that upon merging produce
the signature with the lowest false positive rate are actually
merged. The algorithm proceeds until all the “merged” sig-
natures produce an unacceptable number of false positives
or there is only one cluster left.

2.3.3 Misleading Conjunction and Token-
Subsequences Signatures

A signature is useful if it contains at least a subset of the in-
variant substrings of the worm. The hierarchical clustering



algorithm implemented by Polygraph is greedy [14]. This
choice is motivated by the fact that a non-greedy cluster-
ing algorithm would be computationally expensive. This
property can be exploited by injecting well-crafted noise to
prevent the generation of a useful signature.

Suppose that a polymorphic worm propagates using the
scheme described in Section 2.2 (see Figure 1). Suppose
also that the fake anomalous flow is crafted so that it has
some substrings in common with the real worm, but does
not contain the true invariant parts of the worm, as shown
in Figure 2. We call TI (True Invariants) the set of true in-
variant substrings, and FI (Fake Invariants) the set of sub-
strings in common between the worm and its fake anoma-
lous flow. Suppose now that the suspicious flow pool con-
tains three copies of the worm, and then also three corre-
sponding fake anomalous flows. We call wi the i-th copy of
the worm in the suspicious flow pool and fi its fake anoma-
lous flow. Note that FIi is different for different pairs of wi

and fi because each fake anomalous flow is crafted specifi-
cally according to a worm flow, and each worm flow is dif-
ferent due to polymorphism.

The clustering algorithm starts (at step 0) by constructing
one signature for each (single) flow in the suspicious flow
pool. During the first step of the clustering process, when-
ever a worm flow wi and the corresponding fake anomalous
flow fi are considered together, a signature containing the
common substrings FIi will be generated. It is worth not-
ing that the generated signature in this case will not con-
tain TI . Whenever two worm flows wi and wj are consid-
ered together, a signature containing TI will be generated.
Whereas, whenever two fake anomalous flows fi and fj or
a worm flow wi and a fake anomalous flow fj (j �= i, i.e, it
is from a different worm flow) are considered together, the
generated signature will contain just substrings extracted
from the protocol framework PF (and possibly other sub-
strings that are in common just by chance). Obviously, a
signature containing mostly tokens extracted from the pro-
tocol framework would produce a high number of false pos-
itives because the normal/innocuous flows will also need to
use the protocol/application and thus can also contain sub-
strings of the protocol framework. Therefore, pairs of wi

and fj and pairs of fi and fj (i �= j) will not be merged.
Now, the question is whether a pair of wi and fi (result-
ing in a signature containing FIi) or a pair of wi and wj

(resulting in a signature containing TI) will be merged.

Let p(false positive|FIi) and p(false positive|TI)
be the probabilities that a signature containing FIi and
a signature containing TI will produce a false posi-
tive, respectively. If the fake invariants FIi had been
“well-crafted” by the worm during propagation so that
p(false positive|FIi) < p(false positive|TI), the
“merged” signature s1, produced by the first step of the
clustering algorithm (see above) will contain FIi but will

not contain TI . That is, a worm flow and its cor-
responding fake anomalous flow, say, w1 and f1 will
be merged. Of course, the question is how to obtain
p(false positive|FIi) < p(false positive|TI). In Sec-
tion 2.3.5, we will describe how to produce, in practice, a
fake anomalous flow that corresponds to a true worm flow.
For now, we state that the FIi tokens are made of ran-
dom bytes and that the total number and the lengths of to-
kens in FIi are greater than the number and the lengths
of tokens in TI . As a result, p(false positive|FIi) <
p(false positive|TI) will be very likely to hold. To show
this, let pf (b) be the probability of a byte b, contained in
a fake invariant token, to appear in an innocuous flow, and
pt(b) the probability of a byte b, contained in a true invariant
token, to appear in an innocuous flow. Let the cardinalities
of the sets FIi and TI be x = |FIi| and y = |TI|, re-
spectively, and the lengths of a token tfk

∈ FIi and a token
ttk

∈ TI be lk and hk, respectively. Assuming the bytes of
a token to be extracted from a uniform random distribution
and assuming the tokens to be statistically independent, we
can write:

p(false positive|FIi) =
∏x

k=1

∏lk
j=1 pf (bk,j)

p(false positive|TI) =
∏y

k=1

∏hk

j=1 pt(bk,j)
(1)

where bk,j is the j-th byte of the k-th token. Now, if
we assume that the bytes bk,j have the same probability,
p, to be present in an innocuous flow, so that pf (bk,j) =
pt(bk,j) = p, ∀k,j , it is easy to see that if x · avgk(lk) >
y · avgk(hk) we can obtain p(false positive|FIi) <
p(false positive|TI).

Now, returning to the clustering process. At this point,
there is one cluster, say, ({w1, f1}, s1), and two worm flows
and two fake anomalous flows. Consider all the candidates
for merging. We already know from the above discussion
that if we only consider the four clusters containing a single
flow, the only acceptable merging will be between a worm
flow and its corresponding fake anomalous flow, say w2 and
f2, resulting in a signature containing FI2. But w2 (or f2)
can also merge with the existing cluster, resulting in a set
{w1, f1, w2} (or {w1, f1, f2}). By extracting the substrings
common to all the three flows the algorithm would obtain
only tokens belonging to the protocol framework (and pos-
sibly other small substrings that are common to all three
flows just by chance). We call CSij the signature extracted
from {wi, fi, wj} (or {wi, fi, fj}). Note that TI �⊆ CSij .
Again, p(false positive|FIj) < p(false positive|CSij)
will very likely hold given that CSij will mostly contain
just tokens from the protocol framework. Therefore, the
only acceptable cluster is {w2, f2}.

The algorithm continues and finally there will be three
clusters, namely {w1, f1}, {w2, f2} and {w3, f3}, and three
corresponding signatures. At this point, the clustering al-



gorithm will consider merging the clusters, say, to form
{{w1, f1}, {w2, f2}}. But the set of substrings in common
among all the four flows will not contain TI . Once again,
the signature will mostly contain invariants related to the
protocol framework, and as a result will likely produce a
high number of false positives. Thus, this cluster is not ac-
ceptable, and the clustering algorithm has to terminate.

In conclusion, the noise injection attack misleads Poly-
graph to generate signatures containing the fake invariant
strings (FIi), rather than a useful signature containing the
true invariants (TI).

2.3.4 Misleading Bayes Signatures

To generate Bayes signatures, Polygraph first extracts the
tokens of a minimum length α that are common to at least
K out of a total number of N suspicious flows. If K =
0.2 × N , as suggested in [14], an attacker can mislead the
Bayes signatures by simply programming the worm so that
it sends five fake anomalous flows per worm variant because
in this case the true invariants (TI) occur in less than 20%
of the suspicious flows and will not be extracted/used. It
seems then that for a low value of K the worm needs to
flood the suspicious flow pool with a large number of fake
anomalous flows. However, we show how the worm can
craft the fake anomalous flows so that just a few (one or
two) of them per worm variant will be sufficient to mislead
the generation of Bayes signatures.

If a worm crafts the fake anomalous flows as described
in Section 2.3.3, the Bayes signature generation algorithm
will very likely generate a useful worm signature contain-
ing tokens related to the protocol framework PF and the
true invariant tokens TI . The tokens PF will be present in
100% of the suspicious flows, whereas the tokens TI will
be present in 50% of the suspicious flows if one fake anoma-
lous flow per worm variant is used. The fake invariants FI
are specific for each worm variant and its fake anomalous
flow. This means each FIi will, in general, be present less
than K times in the suspicious flow pool (unless K is very
small) and will not be used to generate the Bayes signatures.
In short, the technique described in Section 2.3.3 cannot
mislead Bayes signatures.

As described in Section 2.3.2, during the generation of
a Bayes signature a score λi is computed for each token ti
in the signature. During the matching process, the scores
of matched tokens are summed. The technique we develop
here is to insert a set of strings in the fake anomalous flows
in such a way that the generated signatures contain tokens
that will score an innocuous flow higher than a true worm
flow, thus making it very hard to set a proper threshold value
(θ) to obtain both low false positive and false negative rates.

Consider now a length n string of bytes v =
(v1, v2, ..vn) that appears in the innocuous flow pool (but

does not appear in the worm flows) with a probability p
that is neither too low nor too high, for example p1 =
0.05 < p(v|Innocuous flow) < 0.20 = p2. If v
is injected into the fake anomalous flows generated by
each variant of the worm, this string will appear in at
least 50% of the suspicious flows. This means that the
string v will be considered as a token in the Bayes signa-
ture. We have p(v|suspicious flow) ≥ 0.5 and p1 <
p(v|Innocuous flow) < p2, thus the token v would re-
ceive a score λv between log(0.5/p2) and log(0.5/p1).
If we split the string v to all the possible substrings of
length m < n, we will obtain n − m + 1 different sub-
strings v1,m = (v1, v2, ..vm), v2,m+1 = (v2, v3, ..vm+1),
..., vn−m+1,n = (vn−m+1, vn−m+2, ..vn). Suppose now
the worm injects all of the n − m + 1 substrings randomly
(with respect to the position for each substring) in each fake
anomalous flow, instead of injecting the entire string v. All
of the substrings of v will be present in at least 50% of the
suspicious flows in the suspicious flow pool and will there-
fore be added as tokens into the Bayes signature.

If m is not much lower than n, we can expect that
p(vj,j+m−1|Innocuous flow) will be not much higher
than p(v|Innocuous flow). In turn, we expect the score
λvj,j+m−1 associated with each of the n−m + 1 substrings
of v to be not much lower than the score λv . This results
in a multiplying effect on the score of v because a flow that
contains v also contains all of its substrings. We will refer
to the strings vj,j+m−1, j = 1..(n − m + 1) as score mul-
tiplier strings.

The Bayes signatures now include PF , TI and the score
multiplier strings. During the matching phase, the total
score for a real worm flow is:

S =
∑

l

λPFl
+

∑
h

λTIh
(2)

Here λTIh
is the score of a worm’s true invariant token

TIh and λPFl
is the score of a protocol framework token

PFl (note that the worm will not contain v).
On the other hand, the total score for an innocuous flow

containing v is at least:

Λ =
n−m+1∑

j=1

λvj,j+m−1 (3)

The innocuous flow contains v and thus all of its sub-
strings, which are tokens in the Bayes signatures (the flow
can also contain PF tokens etc.) If the attacker chooses
v and m such that Λ > S, it will be impossible to set a
threshold θ for the Bayes signatures that will produce a low
false positive rate and low false negative rate at the same
time. This is because if θ < S (and then also θ < Λ)
the signature will generate a high number of false posi-
tives (from around 5% to 20% for the proposed example



0.05 < p(v|Innocuous flow) < 0.20), due to the presence
of v, and then of all its substrings, into a non-negligible per-
centage of normal traffic. On the other hand, if θ > Λ (and
then also θ > S) the Bayes signature will produce around
100% false negatives.

In conclusion, the attacking technique described here
prevents the generation of a useful signature. We will dis-
cuss in Section 3 and in Appendix A how the attacker can
automatically extract a set of candidate strings v (and there-
fore its score multiplier substrings) from network traffic
traces. The obtained candidate strings can be used to ob-
tain the multiplying effect explained above.

2.3.5 Crafting The Noise

Before propagating to the next victim the worm must first
create a polymorphic copy of itself wi. Then it can create
the associated fake anomalous flow fi using the following
algorithm:

a) f
(0)
i = clone(wi): Create a copy of wi.

b) f
(1)
i = randomlyPermuteBytes(f (0)

i ): Permute the

bytes of f
(0)
i but leaving the protocol framework bytes

unchanged.

c) a[ ] = extractFakeInvariants(wi,k,l): Copy k sub-
strings of length l from wi into an array a, choosing
them at random, but do not copy substrings that con-
tain protocol framework or true invariant bytes.

d) f
(2)
i = injectFakeInvariants(f (1)

i ,a[ ]): Copy the fake

invariant substrings into f
(1)
i but do not overwrite

bytes belonging to the protocol framework (see Figure
2).

e) f
(3)
i = injectScoreMultiplierStrings(f (2)

i ,v): Inject

score multiplier strings in f
(2)
i by splitting a string v as

explained in Section 2.3.4. The string v can be chosen
from a set of candidate strings obtained by means of
an analysis of normal network traffic traces performed
using the algorithm explained in Appendix A. The at-
tacker could embed a subset of the candidate strings
into the worm’s code. The decision on which string v
to use can be based on time. For example, the worm
could embed the time of its first infection into its code
and then use a different string v periodically (e.g., ev-
ery 10 minutes for a fast-propagating worm). This is
necessary because the worm and its fake anomalous
flows can arrive at the flow classifiers from multiple
infected hosts. Given that the score multiplier strings
have to be present in a high fraction of the total number
of fake anomalous flows into the suspicious pool, the

Figure 3: An example of fake anomalous flow

worm cannot just pick v at random each time it prop-
agates to a new victim. Instead, each v has to be used
for a period of time.

f) f
(4)
i = obfuscateTrueInvariants(f (3)

i ): This is nec-

essary because f
(3)
i could still contain some true in-

variant strings, even though just by chance. The ob-
fuscation process assures that f

(4)
i will not contain the

worm’s true invariants.

Here f
(h)
i represents an “update” of f

(h−1)
i . The final

fake anomalous flow f
(4)
i and the worm variant wi are sent

together to the next victim. An example of the application
of the above algorithm is reported in Figure 3. The fake
anomalous flow has been crafted using k = 3 fake invari-
ants of length l = 4. The string v is 6 bytes long and the
length of the score multiplier substrings is m = 3. It is
worth noting that the resulting fake anomalous flow does
not contain the true invariant tokens. If the byte frequency
distribution of wi and fi are not very close (due to the injec-
tion of the score multiplier strings) a simple padding tech-
nique could be applied to make the two byte frequency dis-
tribution closer.

2.3.6 Combining Noise Injection and Red Herring At-
tacks

In Section 2.3.3 we presented how the fake anomalous flows
can be crafted to mislead the generation of Conjunction and
Token-subsequences signatures. For such attack to be suc-
cessful, fake anomalous flows generated by different worm
variants should not contain common substrings. The attack-
ing method presented in Section 2.3.4 to mislead the gener-
ation of Bayes signatures violates this constraint because
all the fake anomalous flows in the suspicious flow pool
have to contain the same score multiplier strings. How-
ever, this turns out not to be a problem. During the applica-
tion of the hierarchical clustering algorithm, whenever two
fake anomalous flows fi and fj are involved in a merge, the
extracted tokens will be either part of the protocol frame-
work or score multiplier substrings. Therefore, the gener-
ated signature will very likely produce a high number of
false positives and the flows will not be kept in the same
cluster. It is then very likely to see (following the analysis in



Section 2.3.3) that the only acceptable clusters are {wi, fi}.
Thus, the attack against Bayes signatures described in Sec-
tion 2.3.4 does not interfere with the attack against Con-
junction or Token-subsequence signatures. It follows that
crafting the fake anomalous flows as described in Section
2.3.5, the attack is effective against the three different types
of Polygraph signature generation algorithms.

However, the results of the attack are not deterministi-
cally predictable. As mentioned in Section 2.3.3 it is possi-
ble that a set of flows contains some substrings that are com-
mon just by chance to all the flows in the set. For example
it could happen that two worm variants wi and wj present
(by chance) a common substring ci,j , besides the protocol
framework and true invariant tokens. This means that to
avoid wi and wj being kept in the same cluster, the con-
straint p(false positive|FI) < p(false positive|TI, ci,j)
needs to be verified. Given that ci,j is unknown, it is not
easy to craft the set of fake invariants FI to assure that this
constraint is satisfied. Besides, even if the worm crafts FI
so that p(false positive|FI) is close to zero, it can also
happen that p(false positive|TI, ci,j) = 0. In this case
there is no way to determine which signature is more spe-
cific than the other, and we assume the merged cluster to be
kept is chosen at random.

We will show in Section 3 that in practice the probabil-
ity of success for the noise injection attack is fairly high.
To further increase the success chance of the noise injec-
tion attack, it is possible to combine it with the red her-
ring attack discussed by Polygraph’s authors in [14]. The
worm variants could include some temporary true invari-
ants that change over time. If the Conjunction and Token-
subsequence signature generation algorithms produce (by
chance) a useful signature, this signature would become
useless over a certain period of time. After this period of
time Polygraph could try to generate again new Conjunc-
tion and Token-subsequence signatures to detect the worm.
Nevertheless, this time Polygraph may not be as “fortunate”
as the first time in generating a useful signature. Besides, if
the temporary true invariants were chosen among high fre-
quency strings (e.g., extracted from network traces using
the algorithm presented in Appendix A setting the probabil-
ity between 0.8 and 1), the related tokens would receive a
low score during the generation of the Bayes signature and
therefore would not interfere with the noise injection attack
against Bayes signatures. The final result is that the attacker
has a very high probability to succeed in misleading all the
three types of signatures at the same time.

2.4 Effects of the Noise on Other Auto-
matic Signature Generators

We have performed experiments only on Polygraph.
However, it is possible to evaluate the effects of different

noise injection attacks on other systems basing the analysis
on the description of the signature generation algorithms.
We present an analysis of the possible effects of noise in-
jection attack on Nemean [28].

Nemean is a recently proposed automatic signature gen-
erator that uses a semantic analysis of the network protocols
and two types of signatures, namely connection and session
signatures [28]. It uses a honeynet to collect the suspicious
flow pool. Then it applies a clustering algorithm to group
similar connections in connection clusters and similar ses-
sions in session clusters. Each cluster contains the observed
variants of the same worm. Even though Nemean is suit-
able for generating signatures for worms that use limited
polymorphism [28], it introduces interesting features such
as semantic protocol analysis and connection and session
clustering. For this reason, it is interesting to discuss how it
could be misled using the noise injection attack.

Nemean represents a connection by a vector containing
the distribution of bytes, the request type and the response
codes that occurred in the network data [28]. The fake
anomalous flows can be injected into the suspicious flow
pool as explained in Section 2.2. Given that the fake anoma-
lous flows can be crafted to have the same protocol frame-
work and (almost perfectly) the same distribution of bytes
as the worm variant they derive from, the fake anomalous
flows and the worm variants will be very likely considered
in the same connection cluster. If the fake anomalous flows
are crafted by applying a random permutation of the worm’s
bytes (see Section 2.3.5), the signature generation algorithm
will not be able to discover significant invariant parts com-
mon to the flows in a cluster, and the extracted connection
signatures will be useless because they will likely produce
a high number of false positives. This noise injection attack
will affect the session signatures as well, given that they are
constructed based on the results produced by the connection
clustering process [28].

3 Experiments

In our experiments we tried to have an experimental
setup similar to the one reported in [14] in order to make
the results comparable. Polygraph software is not publicly
available, therefore we implemented our own version fol-
lowing the description of the algorithms in [14].

3.1 Experimental Setup

Polygraph setup. We performed all the experiments
setting the minimum token length α = 2 and the token-
extraction threshold for Bayes signature generation to be
20% of the total size of the suspicious flow pool. We also
set the minimum cluster size to 3 and the maximum accept-
able false positive rate for a signature to be 0.01 during the



application of the hierarchical clustering algorithm for Con-
junction and Token-subsequences signatures.

Polymorphic worm. We considered the Apache-
Knacker exploit reported in [14] as the attack vector for the
worm. We simulated an ideal polymorphic engine follow-
ing the same idea used by Polygraph’s authors, keeping the
protocol framework of the attack and the first two byte of
the return address fixed and filling the wildcard and code
bytes uniformly at random. Each worm variant matches the
regular expression:

GET .* HTTP/1.1\r\n.*\r\nHost: .*\r\n
.*\r\nHost: .*\xFF\xBF.*\r\n

Datasets. We collected several days of HTTP requests
taken from the backbone of a busy aggregated /16 and
/17 academic network (i.e., CIDR [3] blocks of the form
a.b.0.0/16 and c.d.e.0/17) hosting thousands of
machines. The collected traffic contains requests towards
thousands of different public web-servers, both internal and
external with respect to our network. The network traffic
traces were collected between October and November 2004.
We split the traffic traces to obtain three different datasets
which are described below.

Innocuous flow pool. The innocuous flow pool was
made of 100,459 flows related to HTTP requests towards
898 different web-servers1. Among these, 7 flows matched
the same regular expression as the polymorphic worm.
Thus, in absence of noise in the suspicious flow pool, a gen-
erated signature that matched the worm invariants would
result in around 0.007% of false positives on the innocu-
ous flow pool. These 7 flows were the only ones to contain
the \xFF\xBF string. Very similar to our traffic data, the
\xFF\xBF string was present in 0.008% of the evaluation
flows used by Polygraph’s authors to perform their experi-
ments [14]. In [14] the \xFF\xBF token caused the Bayes
signature to produce 0.008% of false positives.

Test flow pools. We used two sets of test flows in our
experiments. The first set was made of 217,164 innocuous
flows1 extracted from the traffic traces. We inspected this
test set to ensure that it did not include any flow containing
the \xFF\xBF string. The second test set was made of 100
simulated worm variants. We used the first test set to mea-
sure the false positive rate and the second one to measure
the false negative rate produced by the signatures. Note that
we obtained the innocuous flow pool and the test set made
of innocuous flows from two different slices of the network
traces.

Score multiplier strings. We used a dataset made of
5,000 flows to extract the score multiplier strings. We
analyzed the flows using the algorithm presented in Ap-
pendix A. We extracted all the substrings of length from

1The flows were “innocuous” in the sense that they did not contain the
considered worm.

6 to 15 bytes having an occurrence frequency between 0.05
and 0.2, obtaining around 300 different strings. Many of
them were strings related to HTTP-header fields introduced
by certain browsers, such as “Cache-Control’, “Modified-
Since”, “Firefox/0.10.1”, “Downloader/6.3”, etc. The ex-
tracted strings are the candidate strings that can be used to
obtain a score multiplying effect to force Bayes signatures
to generate a high number of false positives, as explained
in Section 2.3.4. It is worth noting that the flows used to
extract the score multiplier strings contained both inbound
and outbound HTTP requests taken from the perimeter of
our network. The flows were related to requests among a
large number of different web-servers and clients. For these
reasons we expect the obtained strings and occurrence fre-
quencies to be general and not specific just to our network2.

Fake anomalous flows. We crafted the fake anomalous
flows using the algorithm presented in Section 2.3.5. We
used k = 2 fake invariants of length l = 5 for all the fake
anomalous flows. We used several combinations of score
multiplier strings v by splitting them in different ways to
obtain a different number of substrings for each test. For
each fake anomalous flow, we chose 2

3 of the obtained sub-
strings at random and injected them into the flow3.

3.2 Misleading Bayes Signatures

In [15] Polygraph’s authors state that Bayes signatures
are resilient to the presence of noise into the suspicious
flow pool until the noise level reaches at least 80% of the
total number of flows. In our experiments we found that
if the fake anomalous flows are properly crafted, just 50%
of noise in the suspicious flow pool (i.e., 1 fake anoma-
lous flow per worm variant) can make the generated sig-
nature useless. We performed several experiments using 10
worm variants and 1 or 2 fake anomalous flows per variant
in the suspicious flow pool. The fake anomalous flows were
crafted as explained in Section 2.3.5 and 3.1. We report the
results of two group of tests below.

Case 1. We obtained the best result using “Fire-
fox/0.10.1” (12.2%) and “shockwave-flash” (11.9%) as
score multiplier strings. The percentages between parenthe-
sis represent the occurrence frequencies of the strings (see
Section 3.1). We split the two score multiplier strings to
obtain all the possible substrings of size m = 9 (e.g., “Fire-
fox/0”, “irefox/0.”, “refox/0.1”, etc.).

As described above, we simulated two attack scenarios
using 1 and 2 fake anomalous flows per worm variant, re-
spectively. Therefore, the suspicious flow pool was made

2The extracted strings could obviously present different occurrence fre-
quencies over time. Nevertheless, it is reasonable to assume that the at-
tacker could perform a similar analysis on traffic traces collected just a few
weeks or even days before launching the attack.

3Thus, the fake anomalous flows did not always contain the same set of
substrings.



Figure 4: Case 1. The false positives are measured over the
innocuous flow pool

Figure 5: Case 1. The false positives are measured over the
test flow pool

of 20 flows during the first attack scenario and of 30 flows
during the second one. We generated the Bayes signature
on the suspicious flow pool and measured the false positive
rates on the innocuous flow pool and the test flow pool made
of innocuous traffic. The results are shown in Figure 4 and
Figure 5. Please note that the graphs are represented on dif-
ferent ranges of false positives to highlight the difference
between the two attack scenarios. The plots represent the
false positives and false negatives produced by the signa-
ture while varying the threshold θ starting from 0.0 and in-
crementing it using a 0.5 increment step. A threshold equal
to 0.0 obviously produces 100% of false positives and 0%
of false negatives. By incrementing the threshold, the per-
centage of false positives decreases. The arrows indicate the
coordinates related to the maximum value of the threshold
that produces no false negatives. The Bayes signature gen-
erated during the second scenario is reported in Appendix
B.

In Section 2.3.2 we discussed how Polygraph optimizes
the threshold θ for Bayes signatures. It is easy to see from
Figure 4 that the noise injection attack prevents the thresh-

Figure 6: Case 2. The false positives are measured over the
innocuous flow pool

Figure 7: Case 2. The false positives are measured over the
test flow pool

old θ to be optimized. Consider for example the graph re-
lated to the injection of 1 fake anomalous flow per worm
variant. If θ = 9.5, the signature generates 11.74% of false
positives and 0% of false negatives. In order to decrease
the number of false positives the threshold would need to
be incremented further. However, as soon as the threshold
exceeds 9.5 the signature produces 100% of false negatives.

Case 2. In this case “Pragma: no-cache” (9.4%) and “-
powerpoint” (7.0%) were used as score multiplier strings.
We split these two strings to obtain all the substrings of
length m = 4. Again, the suspicious flow pool contained 10
worm variants and 1 or 2 fake anomalous flows per variant.
The results are reported in Figures 6 and 7. Please note that,
again, the graphs are represented on different ranges of false
positives to highlight the difference between the two attack
scenarios. The Bayes signature generated during the sec-
ond scenario (2 fake anomalous flows per worm variant) is
reported in Appendix B.



1 fake anomalous flow 2 fake anomalous flows
Conjunction 73.3% 88.9%
Token-subsequences 60.0% 73.3%
Bayes 100% 100%
All three signatures 44.4% 62.2%

Table 1: Percentage of successful attacks (using
“Forwarded-For” and “Modified-Since”)

3.3 Misleading All The Three Signatures
at The Same Time

The objective of the noise injection attack is to prevent
the generation of useful signatures. In order to achieve this
result the attack needs to prevent the generation of useful
conjunction, token-subsequences, and Bayes signatures at
the same time. As discussed in Section 2.3.6, the results
of the attack are not deterministically predictable. In or-
der to estimate the probability of success we simulated the
noise injection attack multiple times. We considered an at-
tack successful if Polygraph did not generate a conjunction
or token-subsequence signature that would match the worm
and if the Bayes signature produced more than 1% of false
positives measured over the innocuous flow pool, while still
able to detect the worm. Even though a false positive rate
around 1% is seemingly low, we consider it intolerable for a
blocking signature. We report the results with fake anoma-
lous flows crafted using two different combinations of score
multiplier strings. We divided the tests into two groups. The
first group of tests were performed using “Forwarded-For”
(11.3%) and “Modified-Since” (15.2%) as score multiplier
strings, splitting them into substrings of length m = 5. The
second group of test were performed using “Cache-Control”
(15.1%) and “Range: bytes” (11.9%), splitting them in sub-
strings of length m = 4. For each group of tests we simu-
lated two noise injection attack scenarios using 1 and 2 fake
anomalous flows per worm variant, respectively. We used 5
worm variants in the suspicious flow pool for both the first
and the second scenario. We generated the signatures 45
times for the first group of tests and 20 times for the second
group. The results are shown in Table 1 and Table 2. The
reported percentages represent how many times the attack
was successful in avoiding the generation of useful signa-
tures. The first three rows report the percentage of success
computed for each type of signatures, individually. The last
row represents the percentage of attacks that succeeded in
misleading Polygraph so that it could not generate any use-
ful signature, regardless of the signature type. It is worth
noting that in both experiments, when using 2 fake anoma-
lous flows per worm variant, the attack has a higher prob-
ability to succeed, and further, it prevents Polygraph from
generating a useful Bayes signature 100% of the time.

1 fake anomalous flow 2 fake anomalous flows
Conjunction 65% 95%
Token-subsequences 40% 90%
Bayes 90% 100%
All three signatures 20% 85%

Table 2: Percentage of successful attacks (using “Cache-
Control” and “Range: bytes”)

4 Discussion and Future Work

Polygraph’s authors showed that their system is resilient
to the presence of as much as 80% of “normal” noise in the
suspicious flow pool [14]. However, we showed that if the
noise is properly crafted, just 50% of noise could prevent
Polygraph from generating useful signatures a majority of
the times. In addition, as explained in Section 2.3.6, the
noise injection attack can be easily combined with the red
herring attack discussed in [14]. The combination of the two
attacks increases the probability that the worm will prevent
the generation of a useful signature.

We also conducted experiments on NETBIOS traffic to
extract score multiplier strings that can be used by a worm
that uses this protocol as attack vector. We chose NET-
BIOS because it is an attack vector for most of the OS-
based worms. We analyzed more than 5,000 NETBIOS
flows, searching for strings of length from 6 to 15 bytes
and an occurrence frequency between 0.05 and 0.2. We
found 29 candidate strings in “TCP-based” NETBIOS traf-
fic and 58 candidate strings in “UDP-based” requests. This
experiment suggests that our noise injection technique us-
ing “score multiplier” strings can work for a variety of pro-
tocols. In our future work we plan to perform further exper-
iments using worms that are based on other protocols, e.g.,
NETBIOS, as attack vectors.

A possible defense against our implementation of the
noise injection attack is to use a white list to attempt to filter
out flows that contain the score multiplier substrings. How-
ever, this is not straightforward and may not even be possi-
ble. As shown in Section 3.1, there are a very large number
of strings that a worm can potentially use. The set of can-
didate strings extracted from the traffic are determined by
the occurrence frequency ranges, and the sets of substrings
are determined by the string length value. These are chosen
by the attacker and are not known a priori to the signature
generator. Further, the strings actually used by a worm in-
stance to create fake anomalous flows can change over time.
As a result, a reliable way to filter out the fake anomalous
flows is to look for occurrences of all possible substrings of
a very large set of strings. This can be very expensive. Fur-
ther, such aggressive filtering may prevent the system from
producing useful worm signatures that happen to contain
such substrings.

Another possible countermeasure against the score mul-



tiplier strings technique is to modify the detection algorithm
for Bayes signatures. For example, every time a test flow
matches a token, the related bytes in the flow should be
marked to prevent them from “participating” in matching
another token of the same signature. This means that the
score multiplier effect described in Section 2.3.4 cannot be
achieved anymore. However, the attack may still work if
multiple candidate strings v (see Section 2.3.4) are care-
fully chosen and if they are split without overlap, although
now the induced false positive rate may be much less than
the one obtained during the experiments reported in Section
3.2.

Even if the above countermeasures happen to work in
some cases, the fundamental problem still exists: without
an accurate and robust flow classifier that can prevent the in-
jection of fake anomalous flows, syntactic-based automated
signature generators are vulnerable. The noise injection at-
tack we have described in this paper is proof-of-concept.
We suspect there are many other similar attacks. We believe
that in order to accurately and reliably filter out fake anoma-
lous flows, we must use multiple semantic-aware sensors
(on hosts and networks) and correlate their observations.
This will be part of our future work.

5 Related Work

In addition to the relevant research discussed through-
out the paper, there are several other related works. Our
work fits into the larger field of IDS evasion. Researchers
in this area have used TCP/IP transformations to demon-
strate IDS evasions [16], and address weaknesses created by
ambiguities in network protocols [4]. Numerous tools have
been created, including fragroute [23], snot [22], and
mucus [13]. Some authors have investigated techniques to
automate the generation of evasive attacks. For example, in
[26], the authors identified mutation operations to generate
variations on known exploits. Similarly, the authors in [19]
modeled attack transformations to derive new variations on
known attacks. None of these evasions used polymorphism,
let alone the misleading or evasive polymorphism consid-
ered in our work.

Polymorphic packers and unpackers are of course com-
mon in virus toolkits [9, 20]. A few worms also con-
tain polymorphic engines [24]. For the most part, how-
ever, these polymorphic engines are simple, and do not pro-
duce evasive polymorphic code. Noted exceptions are [2],
and [7], which are closest to our work. In [2] the au-
thors used spectral analysis to create blended shellcode that
evaded an anomaly detection system that used data min-
ing. In [7], the authors presented a technique to generate
blending polymorphic worms (instead of just simple poly-
morphic worms) which evade PAYL [27]. These works
addressed evasive polymorphism to evade anomaly-based

IDS, whereas our work addresses misleading polymorphism
that aims at misleading the signature extraction algorithms
used by syntactic-based automatic signature generators.

6 Conclusion

Syntactic-based automatic worm signature generators,
e.g., Polygraph, typically assume that a set of suspicious
flows are provided by a flow classifier that often introduces
“noise”. The algorithms for extracting the worm signatures
from the flow data are designed to cope with the noise. It
has been reported that these systems can handle a fairly high
noise level, e.g., 80% for Polygraph. In this paper, using
Polgraph as a case study, we described a new and general
class of attacks whereby a worm can combine polymor-
phism and misleading behavior to generate fake anomalous
flows to intentionally pollute the dataset of suspicious flows.
In order to mislead Polygraph, we presented a noise injec-
tion attack whereby the fake anomalous flows are crafted
to contain fake invariants that mislead the signature extrac-
tion algorithms. We presented several techniques, in par-
ticular, injection of score multiplier substrings. Our exper-
iments showed that just injecting one fake anomalous flow
for each actual worm flow, i.e., a 50% noise level, the worm
can already prevent Polygraph from reliably generating use-
ful signatures. Our study suggests that unless an accurate
and robust flow classification process is in place, automatic
syntactic-based signature generators can fail in face of de-
liberate noise injection attacks.
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A Extracting score multiplier strings from
network traces

The objective of the algorithm presented below is to ex-
tract a set of strings of length l from l1 to l2 that appear in
a set of flows F with a probability p between p1 and p2.
The probability p of a string to appear in F is computed as
the ratio of the number of flows that contain the string and
the total number of flows in F . These strings can be ex-
tracted using a tree structure. We present the main idea of
the algorithm first, and then we go into the details.

Each flow in the set of flows is identified by an ID
number. All the strings of a given length l are stored in
a tree structure along with the IDs of the flows that con-
tain the string. Each node at depth l in the tree repre-
sents the l-th character of a substring in the flows. The
algorithm starts considering strings made of one character
and then constructs the tree iteratively. For a given string
s(l) = (s1s2· · ·sl) in a flow, the algorithm traverses the tree
to its prefix s(l−1) = (s1s2· · ·sl−1) and a child node corre-
sponding to sl is created/updated. After processing all the
strings of length l, the “depth-l” nodes (and edges) that has
a probability p < p1 are pruned. Intuition is that if the prob-
ability of a string s is smaller than p1, then the probabilities
of all the strings with prefix equal to s are smaller than p1,
too. For a given node N , the probability p is computed
based on the flow IDs list associated to the node.

The details of the algorithm are as follows. It starts with
an empty root node r. During each step the algorithm ex-
plores all the flows in F one at a time. The first step consid-
ers all the strings of length l = 1 in the flows. Therefore, for
every character in the flows, the algorithm checks whether
a node corresponding to the considered character is present
in the tree. If a node already exists, the algorithm checks



if the current flow (the one from which the character has
been extracted) is present in the list of flow IDs associated
to the node. If not, the flow ID is added in its flow list and
the algorithm goes on considering the next character in the
flow. If the current flow ID is present, instead, the algorithm
does nothing and continues with the next character. If the
node is not present, a node corresponding to the character
is added as a child of the root node and its flow IDs list is
initialized with the current flow ID. After all the flows have
been processed, the probability p of each node N in the tree
is computed as the ratio of the number of different flow IDs
associated to N and the total number of flows in F . Now,
the “depth-1” nodes which have probability p < p1 to ap-
pear in the set of flows F are pruned.

This procedure is iteratively repeated for increasing
string lengths. At any step l, for each strings s(l) of length
l in the flows, the algorithm traverses the tree to the node
at depth (l − 1) corresponding to the prefix of s(l), namely
s(l−1). If a node in the path towards s(l−1) was marked as
pruned, it means that the probability of a prefix of s(l−1) to
appear in F is less than p1. Thus, the tree do not need to
be “updated” with a new node and the string s(l) is disre-
garded. If the node N at depth (l− 1) that represents s(l−1)

is reached, then the algorithm checks whether a child of N
corresponding to the last character of s(l) is present in the
tree. If this child exists, the current flow ID is included into
the flow IDs list of the child (if not yet present) and then the
algorithm continues considering the next string of length l
in the flows. Otherwise, a node corresponding to the last
character of s(l) is added as a child of N and its IDs list is
initialized. The algorithm continues until all the flows have
been processed. Afterwords, it traverses the tree to prune
all the nodes at depth l which have a probability p less the
p1 to appear in the flows. The algorithms iteratively repeat
the explained steps until it reaches the desired maximum
length l2. Once l2 has been reached, all the strings in the
tree whose probability p is greater than p2 are removed and
the remaining strings that have a length greater than l1 are
shown.

B Bayes signatures

The two signatures reported below were generated over
a suspicious flow pool containing 30 flows, 10 worm vari-
ants and 2 fake anomalous flow per variant, as described in
Section 3.2. In the first case (Signature 1) the fake anoma-
lous flows were crafted as explained in Section 2.3 using
“Firefox/0.10.1” (0.122) and “shockwave-flash” (0.119) as
score multiplier strings, splitting them in all the substrings
of length m = 9. It is worth noting that the signature con-
tains tokens that are less long than 9 characters. For exam-
ple “ave-fla” is 7 characters long. In [15] Polygraph’s au-
thors described an algorithm to filter the non distinct tokens.

If a token t1 is a substring of another token t2, they are con-
sidered distinct if t1 appears at least in K = 20% (consider-
ing our experimental setup) of the suspicious flows not as a
substring of t2. “ave-fla” appears in the flows as substring of
“kwave-fla”, but also as substring of “wave-flas” and “ave-
flash”. “ave-fla” and “kwave-fla” will then be deemed dis-
tinct given that “wave-flas” and “ave-flash” appear in more
than 20% of the suspicious flows, which means that “ave-
fla” appears in more than 20% of suspicious flows not as
a substring of “kwave-fla”. The same holds if “ave-fla”
is considered as a substring of either “wave-flas” or “ave-
flash”. Therefore, “ave-fla” will be considered a distinct to-
ken with respect to all the three considered strings and will
be used in the signature.

In the second case (Signature 2) the fake anomalous
flows were crafted using “Pragma: no-cache” (0.094) and
“-powerpoint” (0.07) as score multiplier strings.

Please note that both signatures are very long and some
tokens have been omitted here for the sake of brevity.

Signature 1

<BayesSignature>
<token>ckwave-fl</token><score>1.226376887312</score>
<token>ave-fla</token><score>1.574683581580</score>
<token>ockwave</token><score>1.73669364837</score>
<token>kwave-fl</token><score>1.514058959763</score>
<token>GET </token><score>0.001653782157429</score>
<token>\r\nHost: </token><score>0.01088936346</score>
<token>ox/0.10.1</token><score>1.00568567265</score>
<token>Firefox/0</token><score>0.0</score>
<token>refox/0</token><score>0.901665207652</score>
<token>ave-f</token><score>1.737202511078</score>
<token>shockwave</token><score>1.226376887312</score>
<token>ockwave-f</token><score>1.226376887312</score>
<token>\r\n</token><score>2.190187966704E-4</score>
<token>kwave-f</token><score>1.68590921669</score>
<token>efox/0.10</token><score>0.581901113127</score>
<token>HTTP/1.1\r\n</token><score>0.456821797</score>
<token>ckwave-f</token><score>1.631841995420</score>
<token>kwave-fla</token><score>1.226376887312</score>
<token>efox/0</token><score>1.073515464579</score>
<token>irefox/0</token><score>0.431661578406</score>
<token>\xFF\xBF</token><score>8.47298252532</score>
<token>efox/0.1</token><score>1.217889879847</score>
<token>ave-flash</token><score>0.820911779203</score>
<token>refox/0.1</token><score>0.869583185579</score>
<token>fox/0.10.</token><score>0.687231941540</score>
...

</BayesSignature>



Signature 2

<BayesSignature>
<token>cac</token><score>1.4623066797265616</score>
<token>\r\n</token><score>2.190187966704218E-4</score>
<token>-cac</token><score>1.1849171593021348</score>
<token>agma</token><score>1.4572109198109477</score>
<token>pow</token><score>2.0022106645559026</score>
<token>oint</token><score>1.4303079284389304</score>
<token>poin</token><score>1.3140517165922387</score>
<token>GET </token><score>0.001653782157429088</score>
<token>-pow</token><score>1.441044976439887</score>
<token>erpo</token><score>1.4413254026896216</score>
<token>ower</token><score>1.5247585609776242</score>
<token>powe</token><score>1.630008221107803</score>
<token>no-c</token><score>1.203481845586463</score>
<token>gm</token><score>1.7951796395818411</score>
<token>poi</token><score>1.9422437382750952</score>
<token>ragm</token><score>1.2902554787976765</score>
<token>\r\nHost: </token><score>0.010889363469</score>
<token>rag</token><score>1.8074424891398477</score>
<token>Prag</token><score>1.6005090604829408</score>
<token>owe</token><score>1.6980386101305638</score>
<token>we</token><score>1.4305200746247666</score>
<token>ache</token><score>0.501173539592899</score>
<token>HTTP/1.1\r\n</token><score>0.4568532348</score>
<token>o-c</token><score>1.6041495913093828</score>
<token>werp</token><score>1.4371272437109852</score>
<token>rpo</token><score>1.9473944422216436</score>
<token>ca</token><score>0.06312339137098681</score>
<token>\xFF\xBF</token><score>8.47298252532043</score>
<token>erp</token><score>1.9934036721698547</score>
<token>wer</token><score>1.8309304120713068</score>
<token>-ca</token><score>1.5050574981045213</score>
<token>gma:</token><score>1.1950439523747765</score>
<token>cach</token><score>0.934411500514455</score>
<token>gma</token><score>1.7331763923440477</score>
<token>che</token><score>0.7498172832696891</score>
...
</BayesSignature>


