
A Hardware Platform for Network Intrusion Detection and Prevention

Chris Clark1, Wenke Lee2, David Schimmel1, Didier Contis1, Mohamed Koné2, Ashley Thomas2
Center for Experimental Research in Computer Systems (CERCS)

Georgia Institute of Technology, Atlanta, GA, USA

1School of Electrical and Computer Engineering
{cclark, schimmel, didier}@ece.gatech.edu

2College of Computing

{wenke, lechefs, athomas}@cc.gatech.edu

Abstract

The current generation of centralized network
intrusion detection systems (NIDS) have various
limitations on their performance and effectiveness. In
this paper, we argue that intrusion detection analysis
should be distributed to network node IDS (NNIDS)
running in hardware on the end hosts. An NNIDS can
unambiguously inspect traffic to and from the host, and
when implemented on the network interface hardware,
can function independently of the host operating system
to provide better protection with less overhead than
software implementations. We discuss the computation
and communication characteristics of typical software
intrusion detection analysis tasks. Then, we describe our
efforts in mapping these tasks to a hardware platform
using COTS components including Intel IXP network
processors and Xilinx Virtex FPGAs. We report the
performance of our prototype NNIDS implementation and
provide analysis on how the network processor
architecture affects the performance. Our results show
that the NNIDS can achieve high performance with a
pipeline of processing stages and careful allocation of
tasks to the most appropriate hardware resources.

1. Introduction

The current generation of network intrusion detection
systems (NIDS) have several limitations on their
performance and effectiveness. Many of these limits arise
from some inherent problems with the traditional
placement of the NIDS sensors within the network
infrastructure. Sensors are typically positioned at the
aggregation points between the internal and external

networks and monitor traffic for a large number of
internal hosts. However, there may be other external
entry points that go unmonitored, such as dial-up and
wide-area wireless (cellular) data connections at the end-
hosts. Also, a sensor at the gateway typically does not
monitor traffic between internal hosts, so it cannot detect
internal attacks. The performance problems with this
type of centralized NIDS placement include limited
throughput and poor scalability. Recent studies [1, 2, 3]
have shown that modern NIDS have difficulty dealing
with high-speed network traffic. Others [4, 5] have
shown how attackers can use this fact to hide their
exploits by overloading an NIDS with extraneous
information while executing an attack. Furthermore,
centralized NIDS do not scale well as network speed and
the number of attacks increases. Since network traffic is
increasing faster than computer performance [6] and new
attacks appear almost daily, these problems will only get
worse with time. Therefore, it is important to explore
different architectures for deploying intrusion detection
sensors.

We suggest that, in order for a network intrusion
detection system to accurately detect attacks in a large,
high-speed network environment, the bulk of analysis
should be performed by distributed and collaborative
network node IDS (NNIDS) running at the end hosts.
Advantages of this approach over centralized analysis
include: a large reduction in the quantity of data to be
analyzed, the ability to analyze end-to-end encrypted
traffic, the ability to adapt the analysis based on
knowledge of the end system, and the capability to
actively control the types and rates of traffic received and
sent by a host. A NNIDS is in the unique position to
prevent incoming attacks from reaching the host
operating system or application. In addition, a NNIDS

can prevent outgoing attacks or quarantine an infected
host to keep it from infecting other internal or external
hosts. On the other hand, a distributed architecture
increases the difficulty of managing the sensors and
detecting distributed attacks. However, these issues have
been addressed in related contexts [7, 8, 9, 10, 11, 12,
13].

Our research aims to develop NNIDS that can keep
up (i.e. avoid packet drop) with the traffic rate that an
end-host can accept. These NNIDS should be able to
reliably generate timely and accurate alerts as intrusions
occur and have the intrinsic ability to scale as network
infrastructure and attack sophistication evolve. Research
in algorithms for attack analysis and traffic profiling are
important components of this goal. However, our current
research focus is on another essential component: design
and implementation of a hardware platform that enables
high-speed, reliable, and scalable network intrusion
detection.

We have built a prototype NNIDS, based on the
open-source IDS, Snort [14], on a network interface
utilizing an Intel IXP 1200 network processor [15] and a
Xilinx Virtex-1000 FPGA [16] co-processor. Our tests
show that the NNIDS can keep up with traffic up to 100
Mbps. We believe that the same design, when ported to
the recently-released IXP 2x00 network processor series,
will enable the NNIDS to keep up with traffic of at least 1
Gbps.

In the remaining sections of this paper, we will
discuss the design of high-speed NNIDS, the
implementation of a prototype system, and the results of
experimental studies. In Section 2, we will examine the
design rationales and principles. We will discuss the
need for hardware-based NNIDS and some system
architecture considerations. In Section 3, we will
describe our hardware platform and its use in the
development of a prototype NNIDS. We will explain
how IDS components were mapped to and implemented
on a pipeline of processing elements. In Section 4, we
will present the results of our system evaluation. Finally,
in Section 5, we will provide a summary and discuss
future work.

2. Design rationales and principles

In this section, we discuss some considerations in the
design and implementation of high-speed, reliable, and
scalable network intrusion detection systems.

2.1. Motivation for hardware-based NNIDS

In addition to the problems mentioned in Section 1,
centralized NIDS have other weaknesses. A common and
serious issue is that they typically do not have sufficient

knowledge of the network topology and which operating
systems are running on the network hosts. As a
consequence, the NIDS and a host might interpret the
same network traffic differently. This vulnerability
allows attackers to evade detection by sending attack
traffic to a host that looks harmless from the perspective
of the NIDS [4, 5]. In addition, NIDS generally do not
have the necessary keys (or enough resources) to examine
end-to-end encrypted traffic for every host. This means
that data sent over protocols such as SSL or SSH can not
be analyzed by a centralized NIDS, giving attackers
another means to evade detection.

One remedy to these problems is to use network node
IDS (NNIDS) that each monitor the traffic to a single
host. An NNIDS can unambiguously analyze the network
data and have access to the key(s) to examine encrypted
data. Some NNIDSs have been implemented as kernel-
or application-level software. However, the overhead of
intrusion detection analysis can severely degrade the
performance of other applications running on the host.
Furthermore, if an attacker manages to compromise the
host, she can also disable the NNIDS so that all of her
malicious activities will go undetected. We believe that
these shortcomings can be adequately addressed by
implementing the NNIDS on the network interface rather
than on top of the host operating system.

Network processors will be widely available and
affordable in the near future and can be integrated into a
network interface card (NIC) with a cost similar to other
high-end NICs. Having an NNIDS run on a NIC with a
network processor has several advantages over a software
NNIDS. These include minimal performance impact on
the host system and much stronger protection for both the
host and the IDS itself. A hardware NNIDS runs
independently of the host operating system and can be
made “subversion-resistant” so that it continues to
function even if the attached host is compromised. An
attacker cannot disable the NNIDS even if he penetrates
the host because the control flows to the network
interface can be very restrictive. These facts make it
desirable to install hardware NNIDS in critical systems or
even all of the nodes on the network. This deployment
scheme can scale to large and complex networks because
each NNIDS runs on an affordable NIC and
unambiguously checks only the traffic for its attached
node.

There are other research issues with NNIDSs in
addition to the placement of the agent. The security
policy that dictates network intrusion detection functions
must be managed and enforced in a distributed fashion.
This problem is similar to managing distributed firewalls
[11]. We can learn from the research in distributed
firewalls to develop a (perhaps similar) solution to this
problem. The NNIDS also need to perform event-sharing

and collaborative analysis techniques to detect distributed
attacks and share the workload when necessary. This
problem is not necessarily unique to NNIDS because an
NIDS using load-balancing techniques needs to deal with
the same issue [17, 18]. In other words, we can borrow
ideas from other research to address the issues with
NNIDS.

2.2. Characterization of NIDS components

Before we can design and implement an NIDS on a
network processor, we must first analyze the performance
characteristics of NIDS analysis. A real-time NIDS
monitors network traffic by sniffing (capturing) network
packets and analyzing the traffic data according to
intrusion detection rules. Typically, an NIDS runs as
application-level software. Network traffic data is
captured using an operating system utility, stored in OS
kernel buffers, and then copied to NIDS application
buffers for processing and analysis.

We use Snort [14] as an example to describe the
main stages of packet processing and analysis in NIDS.
In the Snort software, each captured packet goes through
the following steps:

1. Packet decoding: Decodes the header
information at the different layers and stores the
information in data structures. All packets go
through this step.

2. Preprocessing: Calls each preprocessor function
in order, if applicable. The preprocessors used
by default include IP fragment reassembly and
partial TCP stream reassembly.

3. Detection: First, the values in a packet’s header
are used to select an appropriate subset of rules
for further inspection. This subset consists of all
the rules that are applicable to that packet.
Second, the selected rules are evaluated
sequentially.

4. Decision: When there is a match with one of the
detection rules, its corresponding action, alert, or
logging function is carried out.

An NIDS can be considered a queuing system where

the packet buffers are the queues and the NIDS is the
service engine. Obviously, if the NIDS processes the
packets slower than their arrival, the buffers can be filled
up and the newly-arriving packets will be dropped (i.e.
not stored). As a result, the NIDS may not have sufficient
information to accurately analyze the traffic and detect
intrusions. Therefore, it is very important to design and
implement NIDS to minimize dropped packets.

In our benchmarking experiments where Snort runs
as application-level software, the service time ratios of
the above steps are roughly: 3 for decoding, 10 for

preprocessing, and 30 for detection. Logging can be very
slow because of network or disk I/O. We also observe
packet drops when the traffic rate goes above 50 Mbps.

In preprocessing, the bulk of compute-time is spent
on bookkeeping and thus requires frequent memory
accesses. For example, fragments of the same IP packets,
or TCP payloads of the same stream need to be stored in
data structures and looked up. In detection, the bulk of
compute-time is spent on testing the conditions of the
detection rules one by one. A typical NIDS can have
1,500 or more detection rules, and each rule can have
several conditions that require pattern (or keyword)
matching or statistics computation. Another system
factor that slows down NIDS is the inefficiency of the
network data path. Packet data is captured at the network
interface, passed to the kernel via PCI bus, filtered to
eliminate unwanted packets, and the remaining packets
are stored in kernel buffers.

2.3. Hardware architecture considerations

It is clear from the above discussion that there are
potential performance gains if the NIDS components are
implemented in a network processor where packet
processing can take place close to the data source and can
be carried out with a pipeline of processing engines.
However, there are challenges to realize these
performance gains.

Intrusion detection is an interesting application from
a NP (network processor) hardware architecture
perspective because of its substantial resource
requirements. Intrusion detection analysis requires
considerably more compute cycles and memory accesses
per packet than required by traditional NP applications,
such as IP routing and QoS scheduling. The analysis
consists of several tasks with varying resource usage
patterns; some tasks are compute-bound and some are
memory-bound. Furthermore, the amount of work done
for each packet is not constant.

 When designing the NNIDS system architecture, we
considered both the requirements of the various analysis
tasks as well as the capabilities of each hardware
component. Based on these properties and experimental
testing, our goal was to determine the most efficient

 Complexity
 Low High

High Microengines FPGA

D
at

a
R

at
e

Low Micorengines
or StrongARM StrongARM

Figure 1. Task to hardware allocation

allocation of tasks to hardware resources. Some of these
tasks fit well into existing NP architectures and some do
not. Figure 1 summarizes our criteria for mapping tasks
to hardware processing elements. On the IXP, processing
requiring relatively few or simple operations to be applied
to high-rate data can be implemented on the
microengines. We put packet capturing and filtering,
decoding, and preprocessing on the microengines. Each
of these tasks naturally runs in a microengine thread.
Computations that require complex calculations on lower-
rate data are best carried out by the StrongARM
processor. We run the IDS decision engine on the
StrongARM. However, some IDS tasks require both
complex computation and high throughput. This type of
task is not feasible to implement on the network
processor. For such cases, our approach is to map the
computation onto dynamically reconfigurable hardware,
which is able to achieve high performance by optimizing
concurrency of the given computation. We use a field-
programmable gate array (FPGA) co-processor to handle
this type of task. In our system, the co-processor handles
the keyword pattern-matching functions.

3. Prototype NNIDS on a network interface

In this section, we describe a programmable network
interface and our implementation of a NNIDS on this
platform.

3.1. Hardware platform

A block diagram of our hardware platform is shown
in Figure 2. It uses the Radysis ENP-2505 development
board [19] with four 100 Mbps Ethernet ports. The main
components are an Intel IXP network processor and a
Xilinx Virtex FPGA. The FPGA co-processor board is
attached to a PCI mezzanine connector (PMC) and
communicates with the NP via an internal 32-bit, 66 MHz
PCI bus with a theoretical throughput of 2.1 Gbps.
However, the overhead imposed by the PCI interface
limits the type of tasks that can be off-loaded to the co-
processor. The long latency of PCI transactions implies

that large data transfers are more efficient than small
transfers. Also, the FPGA must be able to obtain a large
enough compute-time margin over the NP to overcome
the cost of moving the computation across the PCI bus.
One task that we have successfully off-loaded to the
FPGA—packet payload searching—will be discussed in
Section 3.4. We are also pursuing a more tightly-coupled
NP-FPGA interface to improve performance and enable a
broader class of tasks to be off-loaded to the co-
processor. This would also allow the system to adapt to
changing traffic conditions by dynamically reallocating
tasks between the NP and FPGA. An ideal architecture
would be to have the co-processor attached to the NP’s
SRAM memory bus and mapped into the NP’s address
space as shown in Figure 3. This makes the cost of
accessing the FPGA comparable to the cost of memory
reads and writes and enables a very fine-grained
partitioning of tasks between the IXP and the FPGA.
This is the same type of interface specified by the
Network Processor Forum’s Look Aside Interface LA-1.0
[20].

3.1.1. Intel IXP 1200. We use the Intel IXP 1200
network processor [15] in our implementation. It is a
system-on-chip containing a StrongARM core and six
programmable microengines and has a clock speed of 232
MHz. The StrongARM runs a version of Linux. Each
microengine has hardware support for multi-threading,
and can run a maximum of four threads. The StrongARM
and all the microengines share 256 MB of 64-bit SDRAM
and 8 MB of 32-bit SRAM in our configuration. The
SDRAM has a peak bandwidth of 648 MBps and the
SRAM has a peak bandwidth of 334 MBps.

3.1.2. FPGA co-processor. Field-Programmable Gate
Arrays (FPGAs) have been used to accelerate many
different algorithms, often achieving several orders-of-
magnitude better performance than software
implementations. This is made possible by their ability to
be programmed with circuits customized to the given
application and their capacity to perform massively-
parallel computations.

Figure 2. Prototype hardware platform

Figure 3. Proposed hardware platform

Our FPGA platform consists of a board containing a
Xilinx Virtex-1000 FPGA [16], which is capable of
implementing circuits with the equivalent of up to one
million logic gates. The FPGA has a PCI interface for
I/O as well as its own dedicated high-speed SRAM.

3.2. Snort implementation on IXP

We use Snort [14], a popular open-source NIDS
software package, as the basis of our prototype NNIDS
because it is loosely-coupled and easy to customize.
Here, we briefly describe the main components of the
Snort software. The packet capturing and filtering
module is based on libpcap [21]. The packets are
passed to the decoder to process the various packet
headers. Each packet then passes through a series of
preprocessors, including IP fragmentation reassembly and
TCP stream reassembly. Then the packets are checked by
the detection engine. Snort rules are organized to be
matched in two phases. The first phase assigns each
packet to a group based on the values of some header
fields. The set of rules loaded at configuration-time
determines the number of groups and the header values
associated with each group. The second phase performs
further analysis that depends on the assigned group, but
usually includes a full search of the packet payload for a
large number of patterns. Finally, the decision engine
uses the results of the detection phase to take appropriate
action.

Our task was to modify or restructure the Snort
components to run on the Intel IXP 1200, following two
important design principles. The first is to filter out as
much unwanted (or uninteresting) data as early as
possible. In our design, when it is appropriate according
to the site-specific Snort configuration, the first phase of
rule-matching is moved ahead of several preprocessors to
filter out unmatched packets. The second principle is to
split a Snort module if it has several processing stages

with very different service times and assign the stages to
different processing engines. In our design, this applies
to IP fragmentation reassembly, TCP stream reassembly,
and rule checking.

Figure 4 shows the architecture of our prototype
NNIDS on the IXP 1200. The filtering module performs
packet header based filtering. If the packet received is an
IP fragment, it is enqueued for fragmentation reassembly.
Otherwise, it is enqueued for phase one of rule checking.
Fragmentation reassembly is carried out by two sub-
components. Since fragments can arrive out of order,
Defrag-1 re-orders arriving fragments and inserts them
into a linked list. Defrag-2 reassembles the fragments
only when the set is complete. It also detects
fragmentation anomalies such as overlapping fragments.
It is advantageous to split the original Snort module into
two threads to exploit packet-level parallelism. Similarly,
TCP stream reassembly is carried out by two sub-
modules. Stream-1 validates the TCP packet and
maintains session state information. Stream-2
reassembles the streams when they are complete or at
intermediate points that are appropriate for the underlying
application protocol.

The detection module is also split into two modules.
Detection-1 runs on a microengine and performs the first
phase of rule checking. The most significant task in
Detection-2, payload pattern-matching, requires too much
computation to be run on the microengines or the
StrongARM. Therefore, it is completely offloaded to the
FPGA. The StrongARM uses DMA transfers to send the
packets over the PCI bus to the FPGA. The FPGA
compares the packet to all of the stored patterns and
generates a list of pattern matches. The detection engine
on the StrongARM reads the match results and
determines what actions, if any, should be taken.

3.3. Network interface to host

The NNIDS runs on the network interface card so that
whenever the host communicates with the outside world,
the traffic in both directions is analyzed by the NNIDS.
We have implemented a bi-directional path between the
network and the host that is based on [22]. Figure 5
shows the data flow for incoming and outgoing traffic. A
host device driver makes our platform function as a
conventional Ethernet interface in Linux. Since the
network interface is performing some TCP/IP functions
that would normally be done by the host anyways, it
would be possible to offload these tasks from the host by
developing an interface to a higher layer on the network
stack.

Figure 4. Detection pipeline

A region of the IXP SDRAM is mapped to the host
address space and used as a packet FIFO by the device
driver to transmit outbound traffic to the IXP. Similarly,
a region of host RAM is mapped to the IXP address space
and used as a FIFO for inbound traffic to the host. When
active response is the local policy, firmware running in
the IXP will determine whether to pass or drop each
packet based on the detection outcome.

A second network device driver is implemented to
allow the StrongARM to communicate with the outside
world through the network. This enables remote
administrators to send control and configuration messages
to the StrongARM and receive status or alert information.
In our design, all connections to the StrongARM are
through this driver and treated the same. This means that
a connection from the host to the StrongARM is treated
the same as connections from an outside workstation, and

is subject to intrusion detection processing. Thus, even
when the host is compromised, the NNIDS will continue
to function because attempts to compromise the system
from the host can be detected and blocked by the
detection engine.

3.4. Pattern-matching on FPGA

One of the most computationally-intensive tasks
performed by Snort is pattern-matching on packet content
[23]. Despite improved software pattern-matching
algorithms [23, 24], pattern-matching is still the limiting
factor in the analysis of high-speed traffic. Furthermore,
the NP does not have the processing resources to handle
this task. We eliminate this bottleneck by off-loading all
the pattern-matching tasks to a reconfigurable FPGA co-
processor.

The task of pattern-matching in NIDS consists of
comparing a large number of known patterns against a
stream of packets. An FPGA is well-suited for this task
because it can implement thousands of pattern
comparators operating in parallel. We have developed an
FPGA design that compares a packet’s content against
every pattern in the Snort ruleset (over 1500 patterns)
simultaneously [25]. This design provides high character
density and high throughput, enabling the entire ruleset to
fit into a low-end FPGA device while handling up to
1Gbps of data.

A block diagram of the FPGA pattern-matching co-
processor is shown in Figure 6. The design is pipelined
to process one character of packet data per clock cycle.
An input buffer stores incoming 32-bit data words and
serializes the bytes to output 8-bit characters. Next, the
current character is decoded and character-match signals
are distributed to the pattern-matching units. A pattern-

Figure 5. Network Interface with NNIDS

Figure 6. FPGA pattern-matching co-processor block diagram

matching unit is instantiated for each pattern in the
ruleset. The pattern matchers use a non-deterministic
finite automata (NFA) technique to track matches
between the input data and the stored patterns. Each
pattern-matching unit has an output indicating that a
complete pattern match has occurred. For rules with
multiple patterns, all of the corresponding pattern match
outputs are passed through an AND gate to generate a
rule match output. The rule match signals for all N rules
are stored in a match vector. After the last character of a
packet is processed, the output encoder packs the match
results into 32-bit words and sends them to the IDS
decision engine.

We have developed a software tool that translates a
Snort rule file into an FPGA circuit description for
matching pattern strings. The circuit generator supports
all the standard Snort rule options for pattern matching.
An additional feature not available in Snort is
approximate pattern-matching [26]. Each pattern in a
Snort rule can be specified to allow a certain number of
character mismatches (substitutions, insertions, or
deletions) between the pattern and a packet’s content.
This is useful for detecting an attack pattern that is
expected to contain some variable content, but the exact
variations are unknown or too numerous to list as separate
patterns. It can also help detect new exploits that are
similar to known exploits.

3.5. Reusable IXP libraries

Programming the microengines is difficult because
there is no operating system or support library. In the
course of this project, we have developed a set of libraries
and development tools that are essential for building
NIDS on the IXP. These include a memory management
library, a queue management library, a multi-threaded
packet capturing and filtering library, an IP fragment
reassembly library, and a tool that converts standard
tcpdump captures to the format used by the IXP
simulator.

4. Evaluation and results

We evaluated the prototype system by performing
functional verification, micro-benchmarks, and system-
level benchmarks. The results are presented and analyzed
in this section.

4.1. Functional verification

In order to verify that our system produces correct
results, we compared it with the standard software
distribution of Snort. We attached a computer with our
NNIDS and a computer running standard Snort to a
network hub. We also attached another computer with

traffic generation software to the same hub. The traffic
generator was used to send traffic containing a mixture of
attack and non-attack traffic to the hub, allowing the
traffic to be received simultaneously by both IDS
computers. The output logs of each IDS sensor were
compared, and we found that our system generated the
same set of alerts as the standard Snort software.

4.2. Micro-benchmarks

For each of the NP components, we used the cycle-
accurate IXP Developer’s Workbench Simulator to
thoroughly test the component and measure its
performance. For the pattern-matching component, we
ran the test in hardware and used timers in the
StrongARM to measure performance.

4.2.1. Receive. Since there is a large overhead for
processing each packet’s header, the biggest influence on
receive performance is the packet size, which determines
the number of packet arrivals per second. We tested this
module with a range of packet sizes and determined its
achievable throughput based on the number of clock
cycles required for each packet. The results are presented
in Table 1.

Table 1. Receive performance

Packet size
(Bytes) Cycles / packet Throughput

(Mbps)
64 1863 64

512 3906 243
1024 6642 286

4.2.2. IP defragmentation. The critical factor in IP
defragmentation processing is the number of fragments
per packet. We find that the performance decreases as the
number of fragments increases. The first phase of
processing (Defrag-1) is a memory-bound process
because the number of memory accesses required to insert
fragments into the storage data structure is a function of
the number of fragments, but the calculations performed
on each accessed memory value are minimal. On the
other hand, the second phase (Defrag-2) is a compute-
bound process with execution time as a function of the
number of packets because it must perform several
consistency checks on each fragment before building the
defragmented packet. Table 2 and Table 3 show the
throughput of each phase for a 512-byte packet with
varying numbers of fragments.

4.2.3. Rule-checking phase one. Detection-1 searches
through a list of header values to determine if a given
packet matches any of the rule header values. The list is
structured so that there can be at most one match.
Therefore, the worst case is when no match is found
because the whole list must be traversed. This is a
memory-bound process because only simple comparison
tests are performed on each accessed memory value.
With a single thread running this process, we find that the
throughput is low in the worst case (34 Mbps) since the
microengine is idle most of the time waiting for SRAM
memory operations to complete. Performance could be
improved by using multiple threads with each processing
a different packet. Another way to help performance here
would be to store the list of values in faster memory.
Since the list is relatively small and changed infrequently,
an ideal location would be in microengine-local memory,
but this does not exist in the IXP 1200 (it does exist in the
IXP 2x00).

4.2.4. Rule-checking phase two. The throughput of
Detection-2 depends heavily on the time required to
transfer a packet from the IXP to the FPGA over the PCI
bus. As expected, the performance is better for large
packets then for small packets. Once the data reaches the
FPGA, the processing is completed very quickly.
However, the PCI interface limits the overall performance
of this module. As mentioned earlier, we hope to reduce
this limitation by developing a higher-performance
interface between the IXP and the FPGA. It is important
to remember that our pipelined system is designed to filter
uninteresting packets as soon as possible. Thus, for
normal traffic, the rate of data reaching this final stage
will be significantly less than the rate at the initial receive
stage. Table 4 shows the worst case performance, which
is when all incoming packets reach the Detection-2 phase.

Table 4. Detection-2 worst case performance

The important metrics for the FPGA pattern-matcher
are the number of pattern characters it can store and its
throughput. We ran tests with different size rule sets
loaded, including the full set default rules in the Snort
software package that contains 17,537 characters.
Generally with FPGAs, an increase in logic resource
usage causes increased interconnect delay and reduced
maximum operating frequency. Table 5 shows the
throughput supported by the FPGA circuit for each rule
set, but the actual throughput is limited by the PCI I/O
connection.

Table 5. FPGA pattern-matching performance

4.3. System Benchmarks

We ran some system-level benchmarks to determine
how the components of the detection pipeline perform
together. The testing environment was the same as that
described in Section 4.1. We modeled our experiments
after tests described in a report issued by the NSS Group
[27], a testing lab for commercial IDS products. These
tests are designed to measure the performance of the
system under varying levels of load. We used a traffic
generator to send different rates of fixed-size UDP
packets to the NNIDS sensor. For each rate and packet
size, we measured the percentage of packets that the
sensor was able to process and determined the maximum
rate at which the sensor could operate without dropping
any packets. Because of limitations of the software and
hardware in our packet-generating computer, we were not
able to run tests at maximum rate with minimum-sized
packets.

Since there is a fixed processing overhead for each
packet, tests using small packets generally yield lower
performance since there are more packets being sent per
second. Due to our design goal of stopping the analysis
of a packet as early as possible in the pipeline, the content
of the packets has an effect on the performance. The

Table 2. Defrag-1 performance

Table 3. Defrag-2 performance

Number of
fragments Cycles / frag Throughput

(Mbps)
4 842 282
8 931 128

16 1215 49
32 1381 22

Number of
fragments Cycles / packet Throughput

(Mbps)
4 3203 297
8 4279 222

16 14519 65
32 25512 37

Packet size
(Bytes)

Throughput
(Mbps)

64 16
512 34

1024 51

Number of
characters

Resource
Usage

Freq
(MHz)

Throughput
(Mbps)

2,001 17% 119 951
4,012 25% 115 916
7,996 42% 101 809

17,537 80% 100 801

most significant factor is the outcome of the Detection-1
stage. If a packet’s header matches the values of certain
fields in one of the Snort rules, it must be further checked
by the Detection-2 phase. Otherwise, no further
processing is necessary. Due to the communication
bottleneck in Detection-2, it can become the limiting
component under high utilization. To determine the
effects of packet size and Detection-1 matches, we ran
two sets of tests: one with zero Detection-1 matches and
one with 100 percent Detection-1 matches. The results of
these tests are presented in Table 6 and Table 7,
respectively.

Table 6. Best case (0% Detection-1 matches)
Packet

Size
25

Mbps
50

Mbps
75

 Mbps
100

Mbps
Max

(Mbps)
64 100% 100% 100% * 75

512 100% 100% 100% 100% 100
1024 100% 100% 100% 100% 100

* Our traffic generator could not send traffic at this rate for this size.

Table 7. Worst case (100% Detection-1 matches)
Packet

Size
25

Mbps
50

Mbps
75

Mbps
100

Mbps
Max

(Mbps)
64 69% 40% 25% * 15

512 100% 100% 100% 100% 100
1024 100% 100% 100% 100% 100

* Our traffic generator could not send traffic at this rate for this size.

These tests show that our NNIDS network interface
card, running on a 232 MHz IXP 1200 and a 100 MHz
Xilinx Virtex-1000 FPGA, was able to achieve
performance approximately equal to that reported by the
NSS Group in their test of the Snort 2.0.2 software
running on a high-end server with dual 1.8 GHz Pentium
4 processors and 2GB RAM [27].

5. Summary and Future Work

In this paper, we have discussed the need for building
high-speed NIDS that can reliably generate alerts as
intrusions occur and have the intrinsic ability to scale as
network infrastructure and attack sophistication evolves.
We have analyzed the key design principles and have
argued that network intrusion detection functions should
be carried out by distributed and collaborative NNIDS at
the end-hosts. We have shown that an NNIDS running
on the network interface instead of the host operating
system can provide increased protection, reduced
vulnerability to circumvention, and much lower overhead.

We have also described our experience in
implementing a prototype NNIDS, based on Snort, an

Intel IXP 1200, and a Xilinx Virtex-1000 FPGA. We
also developed, and will make available, several libraries
that are essential for building IDS on the IXP. We have
conducted benchmarking experiments to study the
performance characteristics of the NNIDS components.
These experiments help us identify the performance
bottlenecks and give insights on how to improve our
design. System stress tests showed that our NNIDS can
handle high-speed traffic without packet drops and
achieve the same performance as the Snort software
running on a dedicated high-end computer system.

Our on-going work includes optimizing the
performance of our NNIDS, developing strategies for
sustainable operation of the NNIDS under attacks through
adaptation and active countermeasures, studying
algorithms for distributed and collaborative intrusion
detection, and further developing the analytical models
for buffer and processor allocation. We also plan to port
our design to the next generation of IXP processors and to
utilize higher-performance and more tightly-integrated
FPGA resources. We expect our system to reach at least
1Gbps on the IXP 2400 and even higher on the IXP 2800.
We have tested FPGA pattern-matching designs that
attain over 7 Gbps throughput with the entire Snort
ruleset using 75% of a Xilinx Virtex2-6000 device. We
are working on designs capable of pattern-matching at
over 40 Gbps with a smaller ruleset or a larger FPGA.

In summary, we have provided a better
understanding of the design principles and
implementation techniques for building high-speed,
reliable, and scalable network intrusion detection systems.

References

[1] R. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall, D.

McClung, D. Weber, S. Webster, D. Wyschogrod, R.
Cunninghan, and M. Zissman, “Evaluating Intrusion
Detection Systems: The 1998 DARPA Off-line Intrusion
Detection Evaluation,” DARPA Information Survivability
Conference and Exposition, Jan 2000.

[2] R. Lippmann, J. Haines, D. Fried, J. Korba, and K. Das.,
“Analysis and Results of the 1999 DARPA Off-line
Intrusion Detection Evaluation,” Recent Advances in
Intrusion Detection (RAID 2000), Oct 2000.

[3] J. Allen, A. Christie, W. Fithen, J. McHugh, J. Pickel, and
E. Stoner, “State of the Practice of Intrusion Detection
Technologies,” Technical Report CMU/SEI-99-TR-028,
CMU/SEI, 2000.

[4] T. H. Ptacek and T. N. Newsham, “Insertion, Evasion, and
Denial of Service: Eluding Network Intrusion Detection,”
Technical report, Secure Networks Inc., Jan 1998.

[5] V. Paxson, “Bro: A System for Detecting Network
Intruders in Real-time,” Computer Networks, 31(23-24),
Dec 1999.

[6] L.G. Roberts, “Beyond Moore’s Law: Internet Growth

Trends,” IEEE Computer, pp. 117-119, Jan 2000.
[7] P. A. Porras and P. G. Neumann, “EMERALD: Event

Monitoring Enabling Responses to Anomalous Live
Disturbances,” National Information Systems Security
Conference, Oct 1997.

[8] G. Vigna, R. A. Kemmerer, and P. Blix, “Designing a Web
of Highly-configurable Intrusion Detection Sensors,”
Recent Advances in Intrusion Detection (RAID 2001), Oct
2001.

[9] J. Balasubramaniyan, J. Garcia-Fernandez, D. Isacoff, E.
Spafford, and D. Zamboni, “An Architecture for Intrusion
Detection using Autonomous Agents,” 14th IEEE
Computer Security Applications Conference, pp. 13-24,
Dec 1998.

[10] R. Gopalakrishna and E. H. Spafford, “A Framework for
Distributed Intrusion Detection Using Interest-driven
Cooperating Agents,” Recent Advances in Intrusion
Detection (RAID 2001), Oct 2001.

[11] S. M. Bellovin, “Distributed firewalls”, ;login:, Nov 1999.
[12] C. Payne and T. Markham, “Architecture and Applications

for a Distributed Embedded Firewall,” 17th Annual
Computer Security Applications Conference, 2001.

[13] “3Com Embedded Firewall Architecture for e-business,”
Technical brief, 3Com Corporation, Feb 2002.

[14] M. Roesch, “Snort - Lightweight Intrusion Detection for
Networks,” USENIX LISA Conference, Nov 1999.
Software available at http://www.snort.org.

[15] “Intel Network Processors”
 http://www.intel.com/design/network/products/npfamily/
[16] “Virtex and Virtex-E Overview”
 http://www.xilinx.com/xlnx/xil_prodcat_product.jsp?

title=ss_vir
[17] “Gigabit Ethernet Intrusion Detection Solutions: Internet

Security Systems RealSecure Network Sensors and Top
Layer Networks AS3502 Gigabit AppSwitch Performance
Test Results and Configuration Notes,” White Paper, July
2000.

[18] C. Kruegel, F. Valeur, G. Vigna, and R.A. Kemmerer,
“Stateful Intrusion Detection for High Speed Networks,”
IEEE Symposium on Security and Privacy, May 2002.

[19] “ENP-2505/2506 Data Sheet”
 http://www.radisys.com/oem_products/ds-page.cfm?

productdatasheetsid=1055
[20] “Look Aside Interface LA-1.0,” Network Processor Forum.

http://www.npforum.org/techinfo/approved.shtml
[21] S. McCanne, C. Leres, and V. Jacobson, “libpcap”, 1994.

Available at ftp://ftp.ee.lbl.gov
[22] K. Mackenzie, W. Shi, A. McDonald, and I. Ganev, “An

Intel IXP1200-based Network Interface,” Workshop on
Novel Uses of System Area Networks at HPCA (SAN-2
2003).

[23] M. Fisk and G. Varghese, “Fast Content-based Packet
Handling for Intrusion Detection,” Technical Report
CS2001-0670, UCSD, 2001.

[24] S. Staniford, C.J. Coit, and J. McAlerney, “Towards Faster

String Matching for Intrusion Detection,” DARPA
Information Survivability Conference, 2001.

[25] C.R. Clark and D.E. Schimmel, “Efficient Reconfigurable
Logic Circuits for Matching Complex Network Intrusion
Detection Patterns,” International Conference on Field
Programmable Logic and Applications (FPL), Sept 2003.

[26] C.R. Clark and D.E. Schimmel, “A Pattern-Matching Co-
processor for Network Intrusion Detection Systems,”
International Conference on Field-Programmable
Technology (FPT), Dec 2003.

[27] “100Mbps IDS Group Test, Edition 4”, The NSS Group,
Aug 2003. http://www.nss.co.uk

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

