
Attack Analysis and Detection for Ad Hoc

Routing Protocols

Yi-an Huang and Wenke Lee

College of Computing
Georgia Institute of Technology

801 Atlantic Dr.
Atlanta, GA, USA 30332

{yian, wenke}@cc.gatech.edu

Abstract. Attack analysis is a challenging problem, especially in emerg-
ing environments where there are few known attack cases. One such new
environment is the Mobile Ad hoc Network (MANET). In this paper,
we present a systematic approach to analyze attacks. We introduce the
concept of basic events. An attack can be decomposed into certain com-
binations of basic events. We then define a taxonomy of anomalous basic
events by analyzing the basic security goals.
Attack analysis provides a basis for designing detection models. We use
both specification-based and statistical-based approaches. First, normal
basic events of the protocol can be modeled by an extended finite state
automaton (EFSA) according to the protocol specifications. The EFSA
can detect anomalous basic events that are direct violations of the spec-
ifications. Statistical learning algorithms, with statistical features, i.e.,
statistics on the states and transitions of the EFSA, can train an ef-
fective detection model to detect those anomalous basic events that are
temporal and statistical in nature.
We use the AODV routing protocol as a case study to validate our
research. Our experiments on the MobiEmu wireless emulation plat-
form show that our specification-based and statistical-based models cover
most of the anomalous basic events in our taxonomy.
Keywords: MANET, Attack Analysis, Intrusion Detection, Routing Se-
curity, AODV

1 Introduction

Network protocol design and implementation have become increasingly complex.
Consequently, securing network protocols requires detailed analysis of normal
protocol operations and vulnerabilities. The process is tedious and error-prone.
Traditional attack analysis categorizes attacks based on knowledge of known in-
cidents. Therefore, such analysis cannot be applied to new (unknown) attacks.
The problem is even more serious in new environments where there are very few
known attacks. Mobile ad hoc networking (MANET) is such an example. An
ad hoc network consists of a group of autonomous mobile nodes with no infras-
tructure support. Recently, many MANET applications have emerged, such as

2 Yi-an Huang and Wenke Lee

battlefield operations, personal digital assistant (PDA) communication, among
others. MANET and its applications are very different from traditional network
and applications. They are also more vulnerable due to their unique characteris-
tics, such as open physical medium, dynamic topology, de-centralized computing
environment, and lack of a clear line of defense. Recent research efforts, such
as [Zap01,HPJ02] attempt to apply cryptography techniques to secure MANET
routing protocols. However, existing experience in wired security has already
taught us the necessity of defense-in-depth because there are always human er-
rors and design flaws that enable attackers to exploit software vulnerability.
Therefore, it is also necessary to develop detection and response techniques for
MANET.

Designing an effective intrusion detection system (IDS), as well as other se-
curity mechanisms, requires a deep understanding of threat models and adver-
saries’ attack capabilities. We note that since MANET uses a TCP/IP stack,
many well-known attacks can be applied to MANET but existing security mea-
sures in wired networks can address these attacks. On the other hand, some
protocols, especially routing protocols, are MANET specific. Very few attack
instances of these protocols have been well studied. It follows that traditional
attack analysis cannot work effectively. In this paper, we propose a new attack
analysis approach by decomposing a complicated attack into a number of basic
components called basic events. Every basic event consists of casually related
protocol behavior and uses resources solely within a single node. It is easier to
study the protocol behavior more accurately from the point of view of a single
node. Specifically, we study the basic routing behavior in MANET. We propose
a taxonomy of anomalous basic events for MANET, which is based on poten-
tial targets that attackers can compromise and the security goals that attackers
attempt to compromise for each target.

Based on the taxonomy, we build a prototype IDS for MANET routing pro-
tocols. We choose one of the most popular MANET routing protocols, AODV,
as a case study. We develop specifications in the form of an extended finite state
automaton (EFSA) from AODV IETF Draft [PBRD03] . We apply two detection
approaches which use the EFSA in different ways. First, we can detect violations
of the specification directly, which is often referred to as a specification-based
approach. Second, we can also detect statistical anomalies by constructing sta-
tistical features from the specification and apply machine learning methods. This
statistical-based approach is more suitable for attacks that are temporal and
statistical in nature.

In short, our main contribution is the concept of basic events and its use in
attack taxonomy analysis. We also show how to use protocol specifications to
model normal basic events and derive features from the specification to design
an intrusion detection system.

We use MobiEmu [ZL02] as our evaluation platform for related experiments.
MobiEmu is an experimental testbed that emulates MANET in a wired network.
It shows that our approach involves a much smaller set of features in order to
capture the same set of attacks, compared with our previous work in developing

Attack Analysis and Detection for Ad Hoc Routing Protocols 3

IDS for MANET [HFLY02] that attempted an exhaustive search of features
without the help of taxonomy and protocol specification. As the feature set is
smaller and derived directly from the protocol specification, it has the additional
advantage that domain experts can review it. This further improves accuracy.

The rest of the paper is organized as follows. Section 2 discusses related
concepts of basic events and presents a taxonomy of anomalous basic events in
MANET. Section 3 presents an AODV EFSA specification. Section 4 describes
the design of a MANET IDS, experiments and results. Finally, related work and
conclusions are discussed in Sections 5 and 6.

2 Taxonomy of Anomalous Basic Events

2.1 Concepts

Anomalies or attacks can be categorized using different criteria. Since there is no
well-established taxonomy yet in MANET, we describe a systematic approach
to study MANET attacks based on the concept of anomalous basic events.
We use MANET routing as the subject of our study.

A routing process in MANET involves causally related, cooperative op-
erations from a number of nodes. For example, the Route Discovery process,
frequently appeared in on-demand routing protocols [JMB01,PBRD03], consists
of chained actions from the source node to the destination node (or an inter-
mediate node who knows a route to the destination) and back to the source
node. Such process can be decomposed into a series of basic routing events. A
basic routing event is defined as an indivisible local segment of a routing pro-
cess. More precisely, it is the smallest set of causally related routing operations
on a single node. We will use the term basic event for short. Therefore, the
Route Discovery process can be decomposed into the following basic events: 1)
The source node delivers an initial Route Request; 2) Each node (except for the
source node and the node that has a route to the destination) in the forward
path receives a Route Request from the previous node and forwards it; 3) The re-
plying node receives the Route Request and replies with a Route Reply message;
4) An intermediate node in the reverse path receives a Route Reply message and
forwards it; 5) Finally, the source node receives the Route Reply message and
establishes a route to the destination.

Note that a basic (routing) event may contain one or more operations, such
as receiving a packet, modify a routing parameter, or delivering a packet. How-
ever, the integrity of routing logic requires every basic event be conducted in a
transaction fashion. That is, it is considered successful (or normal) if and only
if it performs all of its operations in the specified order. We assume that certain
system specification exists which specifies normal protocol behavior. As we
will show later in the paper, system specification can be represented in the form
of an extended finite state machine; a (normal) basic event maps to a single tran-
sition in a given extended finite state machine. We further note that to define
a basic event, operations are restricted to the scope of a single MANET node

4 Yi-an Huang and Wenke Lee

because only local data source can be fully trusted by the intrusion detection
agent on the same node.

On the other hand, an anomalous basic event is a basic event that does
not follow the system specification. Obviously, it is useful to study anomalous
basic events in order to capture the characteristics of basic attack components.
Nevertheless, we note that it is possible that some attacks do not trigger any
anomalous basic events. For example, an attack may involve elements from a
different layer that the system specification does not describe, or it may involve
knowledge beyond a single node. A Wormhole attack [HPJ01] is an example
of the first case, where two wireless nodes can create a hidden tunnel through
wires or wireless links with stronger transmission power. A network scan on
known (vulnerable) ports is an example of the latter case because each single
node observes only legitimate uses. To deal with these issues, we plan to work
on a multiple layer and global intrusion detection system.

2.2 Taxonomy of Anomalous Basic Events in MANET Routing
Protocols

We identify an anomalous basic event by two components, its target and op-
eration. A protocol agent running on a single node has different elements to
operate on, with different semantics. The routing behavior of MANET typically
involves three elements or targets: routing messages, data packets and routing
table (or routing cache) entries. Furthermore, we need to study what are the pos-
sible attack operations on these targets. Individual security requirements can be
identified by examining the following well-known security goals: Confidential-
ity, Integrity and Availability. We summarize possible combinations of routing
targets and operations in Table 1. In this table, we list three basic operations
for Integrity compromise: add, delete and change. The exact meanings of these
operations need to be interpreted properly in the context of individual targets.

Conceptually, we can characterize a normal basic event in a similar way, i.e.,
its target and its operation type. Nevertheless, many different normal operations
can be applied and it is hard to find a universal taxonomy of normal operations
for all system specification. Thus, a more logical way is to represent normal basic
events with a different structure, such as the extended state machine approach
we introduce in Section 3.

In MANET routing security, cryptography addresses many problems, espe-
cially those involving confidentiality and integrity issues on data packets. In-
trusion detection techniques are more suitable for other security requirements.
Availability issue, for example, is difficult for protection techniques because at-
tack packets appear indistinguishable from normal user packets. Some integrity
problems also require non-cryptographic solutions for efficiency reasons. For ex-
ample, an attacker can compromise the routing table in a local node and change
the cost of any specific route entry. It may change the sequence number or a
hop count so that some specific route appears more attractive than other valid
routes. Encrypting every access operation on routing entries could be too ex-
pensive. Intrusion detection solutions can better address these issues, based on

Attack Analysis and Detection for Ad Hoc Routing Protocols 5

existing experience in the wired networks. We identify a number of anomalous
basic events that are more suitable for intrusion detection systems in bold face
in Table 1.

There are two types of anomalous basic events marked by asterisks in the
table, Fabrication of Routing Messages and Modification of Routing Messages.
There are cryptographic solutions for these types of problems, but they are not
very efficient and sometimes require an expensive key establishment phase. We
want to study them in our IDS work because they are related to the routing
logic and we can see later that some attacks in these categories can be detected
easily.

Table 1. Taxonomy of Anomalous Basic Events

Compromises to Events by Targets
Security Goals Routing Messages Data Packets Routing Table Entries

Confidentiality Location Disclosure Data Disclosure N/A

Integrity

Add Fabrication* Fabrication Add Route

Delete Interruption Interruption Delete Route

Change
Modification* Modification Change Route Cost

Rushing

Availability Flooding Flooding Routing Table Overflow

We examine a number of basic MANET routing attacks noted in the lit-
erature [HFLY02,NS03,TBK+03]. By comparing them (shown in Table 2) with
taxonomy in Table 1, we find they match very well with the definitions of anoma-
lous basic events. We refer to each attack with a unique name and optionally a
suffix letter. For example, “Route Flooding (S)” is a flooding attack of routing
messages that uses a unique source address.

In addition, we consider a number of more complex attack scenarios that
contains a sequence of anomalous basic events. We use some examples studied
by Ning and Sun [NS03]. These attack scenarios are summarized in Table 3.

As a case study, we analyze AODV [PBRD03], a popular MANET routing
protocol. We analyze its designed behavior using an extended finite state automa-
ton approach. This is inspired by the work on TCP/IP protocols in [SGF+02].

3 A Specification of the AODV Protocol

3.1 An Overview of Extended Finite State Automaton (EFSA)

Specification-based approach provides a model to analyze attacks based on pro-
tocol specifications. Similar to the work by Sekar et al. for TCP/IP proto-
cols [SGF+02], we also propose to model the AODV protocol with an EFSA
approach.

An extended finite state automaton (EFSA) is similar to a finite-state ma-
chine except that transitions and states can carry a finite set of parameters.

6 Yi-an Huang and Wenke Lee

Table 2. Basic MANET Attacks, where suffix letters stand for different attack variations. R, S,
D stand for randomness, source only and destination only, respectively. Other letters include M
(maximal value), F (failure), Y (reply), I (invalid) and N (new).

Attacks Attack Description Corresponding
Anomalous Basic
Events

Active Reply A Route Reply is actively forged with no
related incoming Route Request messages.

Fabrication of Routing
Messages

False Reply A Route Reply is forged for a Route Request

message even though the node is not supposed
to reply.

Route Drop (R) Drop routing packets. (R) denotes a random
selection of source and destination addresses.

Interruption of Routing
Messages

Route Drop (S) A fixed percentage of routing packets with a
specific source address are dropped. (S) stands
for source address.

Route Drop (D) A fixed percentage of routing packets with a
specific destination address are dropped. (D)
stands for destination address.

Modify Sequence (R) Modify the destination’s sequence number
randomly. (R) stands for randomness.

Modification of Routing
Messages

Modify Sequence (M) Increase the destination’s sequence number to
the largest allowed number. (M) stands for the
maximal value.

Modify Hop Change the hop count to a smaller value.
Rushing (F) Shorten the waiting time for Route Replies

when a route is unavailable. (F) stands for
failure.

Rushing of Routing
Messages

Rushing (Y) Shorten the waiting time to send a Route Reply

after a Route Request is received. (Y) stands
for reply.

Route Flooding (R) Flood with both source and destination
addresses randomized.

Flooding of Routing
Messages

Route Flooding (S) Flood with the same source address and
random destination addresses.

Route Flooding (D) Flood to a single destination with random
source addresses.

Data Drop (R | S | D) Similar to Route Drop (R), Route Drop (S), or
Route Drop (D), but using data packets.

Interruption of Data
Packets

Data Flooding (R | S |
D)

Similar to Route Flooding (R), Route Flooding
(S), or Route Flooding (D), but using data
packets.

Flooding of Data
Packets

Add Route (I) An invalid route entry is randomly selected and
validated. (I) stands for invalid.

Add Route of Routing
Table Entries

Add Route (N) A route entry is added directly with random
destination address. (N) stands for new.

Delete Route A random valid route is invalidated. Delete Route of
Routing Table Entries

Change Sequence (R |
M)

Similar to Modify Sequence attacks but the
sequence number is changed directly on the
routing table.

Change Route Cost of
Routing Table Entries

Change Hop Similar to Modify Hop, but the hop count is
changed directly on the routing table.

Overflow Table Add excessive routes to overflow the routing
table.

Routing Table Overflow
of Routing Table
Entries

Conventionally, we call them transition parameters and state variables. We can
derive EFSA from documentation, implementations, RFCs or other materials.

Furthermore, we distinguish two types of transitions: input and output tran-
sitions. Input transitions include packet-receiving events and output transitions

Attack Analysis and Detection for Ad Hoc Routing Protocols 7

Table 3. More Complex MANET Attacks

Attacks Attack Description Corresponding Anomalous Basic Events

Route
Invasion

Inject a node in an
active route.

Fabrication of Routing Messages (two RREQs)

Route Loop Create a route
loop.

Fabrication of Routing Messages (two RREPs)

Partition Separate a network
into two partitions.

Fabrication of Routing Messages (RREP)
Interruption of Data Packets

include packet-delivery events. If there are no packet communication events in-
volved in a transition (which can take place with a timeout, for example), it is
also treated as an input transition.

According to the original definition in [SGF+02], input and output tran-
sitions are separate transitions because only one event can be specified in a
transition. Here we relax the definition of a transition by allowing a transi-
tion to have both a packet-receiving event and a packet-delivery event (ei-
ther of them can still be optional). The relaxed definition of a transition δ is:
δ = {S old → S new, input cond → output action}, where the old and new
states are specified in S old and S new. The new definition assumes the follow-
ing semantics. The output action, if defined, must be performed immediately
after the input condition is met, and before the new state is reached. Unless the
output action has accomplished, no other transitions are allowed.

An input condition (input cond) can specify timeouts or predicates and
at most one packet-receiving event. It uses a C-like expression syntax where
operators like &&, || etc., can be used. State variables (of the original state)
and transition parameters can be accessed in input conditions. To distinguish,
state variables start with lower case letters and transition parameters start with
capitalized letters. Packet-receiving events, predicates and timeouts can be
used as Boolean functions in input conditions. A packet-receiving event or a
predicate has its own parameters, which must be matched with provided values,
unless the value is a dash (-), which specifies that the corresponding parameter
can match any value. An output action (output action) can specify state vari-
able modifications, tasks and at most one packet-delivery event. Predicates and
tasks refer to functionalities that we plan to implement later. An output action
is a list of operations, which can be packet-delivery events, state variable
assignments, or tasks. Either input cond or output action can be optional but
at least one must be present.

In addition, a number of auxiliary functions can be used in either input
conditions or output actions. They are actually evaluated by IDS. We use aux-
iliary functions simply to improve readability.

Protocol state machines are in general non-deterministic, as one incoming
packet can lead to multiple states. We solve non-determinism by introducing
a set of finite state automata, which start from the same state, but fork into
different paths when a state can have multiple transitions based on an incoming

8 Yi-an Huang and Wenke Lee

event. For instance, in TCP, every extended finite state automaton corresponds
to the state of a unique connection. In AODV, operations on a particular route
entry to a single destination can be defined in an extended finite state automaton.
For example, an incoming Route Reply message can add new routes to both the
destination node and the previous hop node, thus the EFSAs for both nodes
need to process this message. In addition, the Route Reply message may also be
forwarded to the originator, which is conducted by a third EFSA corresponding
to the originator.

Clearly, the number of state machines can increase up to the number of
possible nodes in the system if their lifetime is unbounded. Thus, we should
remove unnecessary state machines to reduce memory usage. In AODV, a route
entry is removed after it has been invalidated for a certain period. In other
words, we can identify a final state from which no further progress could be
made. Therefore, state machines reaching the final state can be deleted from the
state machine repository safely.

We construct an AODV EFSA by following the AODV Internet draft version
13 [PBRD03]. AODV uses hop-by-hop routing similar to distant vector based
protocols such as RIP [Mal94]. Nevertheless, there are no periodical route ad-
vertisements. Instead, a route is created only if it is demanded by data traffic
with no available routes [PBRD03].

3.2 The AODV EFSA Specification

Our AODV EFSA is based on the AODV state machine from Bhargavan et al.’s
work [BGK+02]. It is shown in Figures 1 and 2.

Each EFSA contains two sub graphs. The second sub graph (Figure 2) is
only in use within a certain period after a node has rebooted. After all other
nodes have updated their routing entries accordingly, normal routing operations
resume and the other graph (the normal sub graph, Figure 1) is used. The two
sub graphs are shown separately for a better layout.

Note that we only capture major AODV functionalities in the EFSA. Some
specified protocol behavior relies on information from other layers, which we
cannot model for now.

The routing behavior in AODV is defined for every single route entry or des-
tination. In other words, there is a unique EFSA for each destination host. We
use the abbreviation ob to specify the destination, which stands for an observed
node. We define EFSA(ob) as the corresponding EFSA of ob. In addition, there
is a special EFSA, EFSA(cur), where cur is a global variable that defines the
node’s IP address. We create this special EFSA specifically to reply Route Re-
quests for the current node. Thus, for each node, we have a total of n+1 EFSAs
where n is the number of entries in the node’s routing table. That is, n instances
of EFSA(ob), one for each destination, and one instance of EFSA(cur).

Timeouts, predicates, packet-receiving events, packet-delivery events, tasks
and auxiliary functions are further explained below. Note that a predicate or a
packet-receiving event ends with ’?’, while a packet-delivery event ends with ’ !’.

A
tta

ck
A

n
a
ly

sis
a
n
d

D
etectio

n
fo

r
A

d
H

o
c

R
o
u
tin

g
P

ro
to

co
ls

9

(T9)
RREP?[Prev,ob,Dst,Dst_Seq,Hops]&&ob!=cur->

RREP![nxt,ob,Dst.Dst_Seq,Hops+1]

(T1)
DELETE_PERIOD->

(T5)
RREQ?[-, Src,Src_Seq,ob,Dst_Seq,Hops,
 ID] && noduplicate?[Src,ID]->
RREQ![Src,Src_Seq,ob,
 max(oSeq,Dst_Seq),Hops+1,ID]

(T8)
(RREQ?[Prev,ob,Seq,-,-,Hops,ID]&&
 noduplicate?[ob,ID] ||
RREP?[Prev,Src,ob,Seq,Hops])&&
better?[(Seq,Hops+1).(oSeq,nHop)]->
oSeq=Seq;nHops=Hops+1;nxt=Prev;
continue

(T12)
ob!=cur&& (route_invalidated?[ob]||
 ACTIVE_ROUTE_TIMEOUT
 (from last T10))->
RERR![(extend(ob)]; oSeq++

(T11)
RREQ?[Prev,Src,SSeq,ob,Dst_Seq,Hops,ID] &&
 noduplicate?[Src,ID] &&
 (ob==cur||oSeq>=Dst_Seq)->
if(ob==cur&&oSeq==Dst_Seq) cSeq=oSeq++;
RREP![Prev,Src,ob,oSeq,nHops]

(T10)
DATA?[Src,ob] ->
if (ob!=cur) DATA![Src,ob,nxt]

(T2)
DATA?[cur, ob] ->

save_buffer(ob,DATA);
RREQ![cur,++cSeq,ob,

oSeq,0,++rreqid];
retries=0

(T6)
NET_TRAVERSAL_TIME&&
 retries==RREQ_RETRIES->
clear_buffer(ob); oSeq++;
RERR![extend(ob)]

(T7)
(RREQ?[ob,From,-,-,-,-,-] ||
RREP?[ob,-,From-,-]) &&

From!=ob->
 oSeq=?;nHops=1;

nxt = ob;
flush_buffer(ob);

continue

(T4)
NET_TRAVERSAL_TIME&&
 retries<RREQ_RETRIES->
RREQ![cur,cSeq, ob, oSeq,0,++rreqid];
retries++

(T3)
DATA?[cur,ob]->

save_buffer(ob,DATA)

(T7’)=T7
(without continue)

(T8’)=T8
(without continue)

WaitRREP[ob,oSeq,
nHops, retries]

Invalid[ob,oSeq,nHops]

Valid[ob,oSeq,nHops,nxt]

(T5’)=T5

(T7’’)=T7
(without continue)

(T8’’)=T8
(without continue)

DONE[ob]

(T0)
packet?(ob)->
oSeq=?;
nHops=?;
continue

(T12’)
ob!=cur&&

RERR?[nxt, ob, Dst_Seq]->
RERR![(extend(ob)];

oSeq=Dst_Seq

Start[ob]

F
ig

.
1
.
A

O
D

V
E

x
ten

d
ed

F
in

ite
S
ta

te
m

a
ch

in
e

(o
b):

In
N

o
rm

a
l
U

se

1
0

Y
i-a

n
H

u
a
n
g

a
n
d

W
en

k
e

L
ee

(TR4)
(RREQ?[Prev,ob,Seq,-,-,Hops,ID]&&
 noduplicate?[ob,ID] ||
 RREP?[Prev,Src,ob,Seq,Hops])&&
 better?[(Seq,Hops+1).(oSeq,nHop)]->
oSeq=Seq;nHops=Hops+1;nxt=Prev

(TR6)
RREQ?[Prev,Src,SSeq,ob,Dst_Seq,Hops,ID] &&
 noduplicate?[Src,ID] &&
 (ob==cur||oSeq>=Dst_Seq)->
if(ob==cur&&oSeq==Dst_Seq) cSeq=oSeq++

(TR5)
DATA?[Src,ob]->
if (ob!=cur) RERR![extend(ob)]];
oSeq++

(TR2)
DATA?[Src, ob]->
RERR![extend(ob)]; oSeq++

(TR3)
(RREQ?[ob,From,-,-,-,-,-] ||
RREP?[ob,-,From-,-]) &&

From!=ob->
 oSeq=?;nHops=1;

nxt = ob

REBOOT_Invalid[ob,oSeq,nHops]

REBOOT_Valid[ob,oSeq,nHops,nxt]

REBOOT[ob]

(TR3’’)=TR3 (TR4’)=TR4

(TR0)
ob!=cur && packet?(ob)->
oSeq=? ;
nHops=?

(TR7’)
ob!=cur&&

RRER?[nxt, ob, Dst_Seq]->
oSeq=Dst_Seq

(TR7)
ob!=cur&&(route_invalidated?[ob]||
 ACTIVE_ROUTE_TIMEOUT
 (from last T10))->
oSeq++

(TR1)
DELETE_PERIOD->

(from last TR2 or TR5 of ALL nodes)

Valid[ob,oSeq,nHops,nxt]

Start[ob]

(TR1)
ob==cur && DELETE_PERIOD

(from last TR2 or TR5 of all nodes)->

(TR0’)
ob==cur->

oSeq=0;
nHops=0

F
ig

.
2
.
A

O
D

V
E

x
ten

d
ed

F
in

ite
S
ta

te
m

a
ch

in
e

(o
b):

A
fter

R
eb

o
o
t

Attack Analysis and Detection for Ad Hoc Routing Protocols 11

– Timeouts:

1. DELETE PERIOD: specify how long an invalidated route should re-
main in memory.

2. ACTIVE ROUTE TIMEOUT: specify how long before a valid route
should be invalidated due to inactivity.

3. NET TRAVERSAL TIME: specify the maximal round trip time af-
ter a RREQ has been sent and before the corresponding RREP is re-
ceived.

– Predicates (the expected behavior):

1. noduplicate?[Src, ID]: return true if RREQ from Src with RREQ ID is
not seen before. The pair is then cached and can be used for comparison
in later calls.

2. route invalidated?[Dst]: return true if a route to Dst has been inval-
idated due to link loss or incoming RERR, etc.

– Packet-receiving events:

1. DATA?[Src, Dst]: return true if there is an incoming data packet that
was originated from Src, and is destined to Dst.

2. RREQ?[Prev, Src, Src Seq, Dst, Dst Seq, Hops, ID]: return true
if a RREQ message has been received and it contains the following fields.
The originator is Src with sequence number Src Seq and a unique RREQ
ID. The destination is Dst with sequence number Dst Seq. The number
of hops from Src is Hops. Finally, the Prev field specifies the address of
the previous hop. Although not shown in the outgoing RREQ! event,
this field can be found in the incoming packet’s IP header.

3. RREP?[Prev, Src, Dst, Dst Seq, Hops]: return true if there is an
incoming RREP and named fields match the specified parameters (sim-
ilar to RREQ?, except that Hops here represents the hops to Dst).

4. RERR?[Src, Dst, Dst Seq]: return true if an incoming RERR mes-
sage was sent by Src, and includes Dst in its unreachable destination list,
with sequence number Dst Seq.

– Packet-delivery events:

1. DATA![Src, Dst, Next]: forward a data packet that was originated
from Src and is destined to Dst, to the next hop Next.

2. RREQ![Src, Src Seq, Dst, Dst Seq, Hops, ID]: broadcast RREQ
with supplied fields.

3. RREP![Next, Src, Dst, Dst Seq, Hops]: deliver RREP. We explic-
itly specify Next here since RREP, different from RREQ, is not broad-
cast.

4. RERR![Dsts]: deliver RERR with the list of unreachable destinations
in Dsts. Corresponding sequence numbers of these destinations are also
included in Dsts.

– Tasks (the expected behavior):

1. save buffer(Dst, DATA): buffer the data with destination Dst.
2. flush buffer(Dst, Next): deliver all packets in the data buffer with

destination Dst through Next, and removes them from the data buffer.

12 Yi-an Huang and Wenke Lee

3. clear buffer(Dst): remove all data with destination Dst from the data
buffer.

– Auxiliary functions:
1. packet?(Dst): return true if there is an incoming packet destined to Dst.

It is a shorthand of DATA?[-,Dst] || RREQ?[-,-,-,Dst,-,-,-] || RREP?[-,-
,Dst,-,-] || RERR?[Dsts] && Dst ∈ Dsts.

2. better?([seq1, hop1],[seq2, hop2]): return true if (seq1 > seq2 ||
seq1==seq2 && hop1 < hop2 || seq2 is unknown).

3. extend(Dst): return a list of unreachable destinations (with their se-
quence numbers) due to a broken link to Dst. Routes to these destinations
include Dst as their next hop. Obviously, Dst ∈ extend(Dst).

4. continue: do not stop in the new state after a transition. Instead, at-
tempt to make another state transition from the new state.

4 Design of an Intrusion Detection System for AODV

Before we analyze design issues of an Intrusion Detection System (IDS) for
AODV, we make the following assumptions: 1) IDS should have access to in-
ternal routing elements, such as routing table entries. Currently, we modify the
AODV implementation in our testbed to store routing table entries in a shared
memory block, so that other processes can access them. In the future, hardware
assistance may be necessary to achieve this; 2) IDS should also have the capa-
bility of intercepting incoming and outgoing packets, including data and routing
messages.

Statistical-based detection technique, equipped with machine learning tools,
can be used to detect abnormal patterns. It has the potential advantage of
detecting unknown attacks. But it usually comes with a high false alarm rate.
Its detection performance heavily depends on selected features.

In contrast, specification-based techniques use specifications to model legit-
imate system behavior and do not produce false alarms. However, developing
specification is time consuming. Furthermore, many complex attacks do not vi-
olate the specification directly and cannot be detected using this approach.

Our detection approach combines the advantages of both techniques. Conse-
quently, we separate anomalous basic events into two sets, events that directly
violate the semantics of EFSAs, and events that require statistical measures.

4.1 Detection of Specification Violations

Some anomalous basic events can be directly translated into violations of EF-
SAs. We identify three types of violations: Invalid State Violation, Incorrect
Transition Violation and Unexpected Action Violation.

Invalid State Violation involves a state that does not appear to be valid in
the specification. In our specification, an invalid state means the combination of
state variables in the current state is invalid according to the specification. For
example, a state with a negative hop count is considered an invalid state. In our

Attack Analysis and Detection for Ad Hoc Routing Protocols 13

implementation, we keep a copy of state variables every five seconds. Thus, we
can track invalid changes in state variables.

Incorrect Transition Violations occur if invalid transitions are detected. We
verify the proper transition by comparing possible input conditions on all tran-
sitions from the current state. If a state change occurs while no input conditions
can be met, this type of violation is detected. In addition, there are self-looping
transitions that do not change the current state. For these transitions, we exam-
ine output actions. If some of these output actions (which include packet delivery
events and state variable modifications) are detected while corresponding input
conditions do not match, we also identify this type of violation. Our implemen-
tation monitors incoming and outgoing traffic to determine if input conditions
and output actions are properly handled.

Unexpected Action Violation corresponds to the situation when the input
condition during a transition matches and the new state is as expected, but the
output action is not correctly or fully performed.

We show that the specification-based approach can detect the following
anomalous basic events:

Interruption of Data Packets: We monitor the transition T10, where data is for-
warded when a valid route is available. An attacker interrupts data packets
by receiving but not forwarding data. It is observed as a type of Unexpected
Action Violation in the transition.

Interruption of Routing Messages: An attacker may choose to interrupt certain
types of routing messages by conducting the corresponding transition but
not actually sending the routing packets. For more details, Route Request
messages are delivered in transition T4, T5, or T5’; Route Reply messages
are delivered in T9 or T11; Route Error messages are delivered in TR2,
TR5, T6, T12 or T12’. They can always be identified as Unexpected Action
Violations in the corresponding transition.

Add Route of Routing Table Entries: We monitor state change to the state when
a route to ob becomes available (state Valid) from other states. If it does
not go through legitimate transitions (which include T7, T8, T7’ and T8’),
it implies that a new route is created bypassing the normal route creation
path. It is an Incorrect Transition Violation in these transitions.

Delete Route of Routing Table Entries: Similarly, we monitor state change in a
reverse direction, i.e., from a valid state (state Valid) to a state when a route
becomes unavailable (state Invalid). If it does not go through legitimate
transitions (T12 and T12’), it is detected as an Incorrect Transition Violation
of these transitions.

Change Route Cost of Routing Table Entries: We can identify changes in sequence
numbers or hop counts to the routing table using the memorized state vari-
able copy, when a valid route is available (state Valid). They are examples
of Invalid State Violations.

Fabrication of Routing Messages: Currently, our approach can identify a special
type of Fabrication of Routing Messages, namely, Route Reply Fabrication.
We examine the transitions that deliver Route Reply messages (transitions

14 Yi-an Huang and Wenke Lee

T9 and T11). If the output actions are found but the input conditions do not
match, we will identify an Incorrect Transition Violation in these transitions,
which is an indication that outgoing routing messages are in fact fabricated.

To summarize, we define a violation detection matrix. It maps violation infor-
mation (the violated transition(s) or state and the violation type) to an anoma-
lous basic event. The matrix is shown in Table 4. It can be used to detect attacks
that directly violate the AODV specification where we can identify the corre-
sponding types of anomalous basic events. Detection results are summarized in
Section 4.3.

Table 4. Violation Detection Matrix in AODV

State or
Transition(s)

Invalid State
Violation

Incorrect Transition
Violation

Unexpected Action
Violation

TR2, TR5, T6 Interruption of
Route Errors

T4, T5, T5’ Interruption of
Route Requests

T7, T8, T7’, T8’ Add Route

T9, T11 Fabrication of Route
Replies

Interruption of
Route Replies

T10 Interruption of Data
Packets

T12, T12’ Delete Route Interruption of
Route Errors

Valid Change Route Cost

4.2 Detection of Statistical Deviations

For anomalous events that are temporal and statistical in nature, statistical
features can be constructed and applied to build a machine learning model that
distinguishes normal and anomalous events. RIPPER [Coh95], a well-known rule
based classifier, is used in our experiments.

We first determine a set of statistical features based on activities from anoma-
lous basic events that cannot be effectively detected using the specification-based
approach. Features are computed periodically based on the specified statistics
from all running EFSAs, and stored in audit logs for further inspection. To build
a detection model, we use a number of off-line audit logs (known as training data)
which contain attacks matching these anomalous basic events. Furthermore, each
record is pre-labeled with the type of the corresponding anomalous basic event
(or normal if the record is not associated with any attacks) because we know
which attacks are used. They are processed by RIPPER and a detection model
is generated. The model is a set of detection rules. The model is then used to
detect attacks in the test data.

Attack Analysis and Detection for Ad Hoc Routing Protocols 15

Using the taxonomy of anomalous basic events in Table 1, we identify the
following anomalous basic events that remain to be addressed, because they can-
not be detected in the specification-based approach. For each type of anomalous
basic event, we discuss what features are needed to capture its behavior. All
features are defined within a sampling window. We use a sampling window of
five seconds in all cases. In addition, features are normalized in a scale of 0 to
50.

Flooding of Data Packets: In order to capture this anomalous event, we need to
capture the volume of incoming data packets. In AODV, data packets can
be accepted under three different situations: when a valid route is available
(which is transition T10), when a route is unavailable and no route request
has been sent yet (transition T2) or when a route is unavailable and a route
request has been sent to solicit a route for the destination (transition T3).
Accordingly, we should monitor frequencies of all these data packet receiving
transitions. We define three statistical features, Data1, Data2, and Data3,
for each transition (T10, T2 and T3) respectively.

Flooding of Routing Messages: Similarly, we need to monitor the frequencies of
transitions where routing messages are received. However, a larger set of
transitions need to be observed because we need to take into account of
every type of routing messages (which include 15 transitions, T5, T5’, T7,
T8, T7’, T8’, T7”, T8”, T9, T11, TR3, TR4, TR3’, TR4’, and TR6). In order
not to introduce too many features, we use an aggregated feature Routing
which denotes the frequency of all these transitions. Note that it is not the
same as monitoring the rate of incoming routing messages. An incoming
routing message may not be processed by any EFSA in a node. We need
only to consider messages that are being processed.

Modification of Routing Messages: Currently, we consider only modifications to
the sequence number field. We define Seq as the highest destination sequence
number in routing messages during transitions where they are received (see
above for the transitions involved in routing messages).

Rushing of Routing Messages: We monitor two features where some typical rout-
ing process may be rushed. Rushing1 is the frequency of the transition where
a route discovery process fails because the number of Route Requests sent
has exceeded a threshold (RREQ RETRIES) or certain timeout has elapsed
(NET TRAVERSAL TIME in transition T6). Rushing2 is the frequency of
the transition where a Route Request message was received and it is replied
by delivering a Route Reply message (transition T11).

4.3 Experiments and Results

Environment: We use MobiEmu [ZL02] as the evaluation platform. MobiEmu
is an experimental testbed that emulates MANET environment with a local
wired network. Mobile topology is emulated through Linux’s packet filtering
mechanism. Different from many simulation tools, MobiEmu provides a scal-
able application-level emulation platform, which is critical for us to evaluate

16 Yi-an Huang and Wenke Lee

the intrusion detection framework efficiently on a reasonably large network. We
use the AODV-UIUC implementation [KZG03], which is designed specifically to
work with the MobiEmu platform.

Experiment Parameters: The following parameters are used throughout our ex-
periments. Mobility scenarios are generated using a random way-point model
with 50 nodes moving in an area of 1000m by 1000m. The pause time between
movements is 10s and the maximum movement speed is 20.0m/s. Randomized
TCP and UDP/CBR (Constant Bit Rate) traffic are used but the maximum
number of connections is set to 20; and the average traffic rate is 4 packets per
second. These parameters define a typical MANET scenario with modest traffic
load and mobility. They are similar to the parameters used in other MANET
experiments, such as [PRDM01,MBJJ99,MGLB00]. Nevertheless, we have not
systematically explored all possible scenarios (for instance, with high mobility
or under high traffic load). We plan to address this issue in our future work.

We test our framework with multiple independent runs. A normal run con-
tains only normal background traffic. An attack run, in addition, contains mul-
tiple attack instances which are randomly generated from attacks specified in
Tables 2 and 3 or a subset according to certain criteria.

We use ten attack runs and two normal runs as the test data, each of which
runs 100,000 seconds (or 20,000 records since we use a sampling window of five
seconds). In each attack run, different types of attacks are generated randomly
with equal probability. Attack instances are also generated with random time
lengths, but we guarantee that 80% of total records are normal. It is a relatively
practical setting considering that normal events should be the majority in a real
network environment. We use normal data in normal runs and attack runs to
evaluate false alarm rates.

Detection of Specification Violations: The following attacks are detected in the
test data as direct violations of the EFSA, which verifies our previous analysis
that these attacks match anomalous basic events that can be directly detected
by verifying the specification. For complex attacks, a different network size may
be used if appropriate. Note that detection rates are 100% and false alarm rates
are 0% for attacks when the specification-based approach is used.

Data Drop (R | S | D): detected as Interruption of Data Packets.
Route Drop (R | S | D): detected as Interruption of Routing Messages.
Add Route (I | N): detected as Add Route of Routing Table Entries.
Delete Route: detected as Delete Route of Routing Table Entries.
Change Sequence (R | M); Change Hop: detected as Change Route Cost of Rout-

ing Table Entries.
Active Reply; False Reply: detected as Route Reply Fabrication.
Route Invasion; Route Loop: They are detected since they use fabricated routing

messages similar to what the Active Reply attack does. In particular, Route
Invasion uses Route Request messages, and Route Loop uses Route Reply
messages. With the same set of transitions in Route Drop, we can detect

Attack Analysis and Detection for Ad Hoc Routing Protocols 17

them as Incorrect Transition Violations in Route Request or Route Reply
delivery transitions.

Partition: This attack can be detected since it uses a fabricated routing message
(Route Reply) and interrupts data packets. Therefore, monitoring the transi-
tions related to Route Reply (as in Route Drop), and the transition related
to data packet forwarding (T10, as described in Data Drop), we can detect
this attack with the following violations identified: Incorrect Transition Vi-
olation in Route Reply delivery transitions and Unexpected Action Violation
in the data forwarding transition.

Detection of Statistical Deviations: Some attacks are temporal and statistical
in nature and should be detected using the statistical approach. The following
are four representative examples of such attacks: Data Flooding (S | D | R);
Route Flooding (S | D | R); Modify sequence (R | M); Rushing (F |
Y).

Four attacks data sets, each of which contains an attack run of 25,000 seconds
(or 5,000 records), are used to train the detection model. Each data set con-
tains attacks that match to one type of anomalous basic event. Attack instances
are generated in such a way that the number of abnormal records accounts for
roughly 50% of total records, instead of 80% in the case of test data. It helps
improve detection accuracy by using approximately the same amount of normal
and abnormal data. We train separately with each training data set. The same
test data set is used to evaluate the learned model.

Table 5. Detection and False Alarm Rates of the Statistical-based Approach

(a) Attack Detection Rates

Attack Detection rate

Data Flooding (S) 93±3%

Data Flooding (D) 91±4%

Data Flooding (R) 92±4%

Route Flooding (S) 89±3%

Route Flooding (D) 91±2%

Route Flooding (R) 89±3%

Modify sequence (R) 59±19%

Modify sequence (M) 100±0%

Rushing (F) 91±3%

Rushing (Y) 85±4%

(b) Detection and False Alarm Rates of
Anomalous Basic Events

Anomalous
Basic Event

Detection
Rate

False Alarm
Rate

Flooding of
Data Packets

92±3% 5±1%

Flooding of
Routing
Messages

91±3% 9±4%

Modification
of Routing
Messages

79±10% 32±8%

Rushing of
Routing
Messages

88±4% 14±2%

18 Yi-an Huang and Wenke Lee

The detailed detection results are shown in Table 5. We show the detection
rates of tested attacks (in Table 5(a)). We consider a successful detection of an
attack record if and only if the corresponding anomalous basic event is correctly
identified. We also show the detection and false alarm rates (in Table 5(b))
directly against anomalous basic events. We analyze these results for each type
of anomalous basic event below.

Flooding of Data Packets and Routing Messages: We implement flooding as traf-
fic over 20 packets per second. For flooding of data packets, 92% can be
detected. They are detected by observing abnormally high volume on at
least one of related statistics, Data1, Data2, or Data3. Similar results are
also observed for flooding of routing messages.

Modification of Routing Messages: The corresponding detection result is not very
satisfactory. It shows high variations in both the detection and false alarm
rates. In fact, the corresponding detection rule assumes that this anoma-
lous basic event can be predicted when at least some incoming packet has
a sequence number larger than certain threshold. It is not a rule that can
be generally applied. Randomly generated sequence numbers may only be
partially detected as attacks. We further discuss problem in the end of this
section. In contrast, for a special type of sequence modification (Modify Se-
quence (M)), the detection rate is perfect. Because we know that it is very
rare for the largest sequence number to appear in the sequence number field
of routing messages.

Rushing of Routing Messages: Detection performance varies significantly on dif-
ferent rushing attacks, namely, Rushing (F) and Rushing (Y). In Rushing
(F), the attacker tries to shorten the waiting time for a Route Reply mes-
sage even if a route is not available yet. Because more requests to the same
destination may follow if route discovery was prematurely interrupted, the
attack results in abnormally high frequency where the route discovery pro-
cess is terminated (Rushing1). In Rushing (Y), the attacker expedites Route
Reply delivery when a Route Request message has been received. It can be
captured because the corresponding transition (T11) now occurs more fre-
quently than a computed threshold (Rushing2). Nevertheless, we also observe
significant false alarms in detecting these attacks. It results from irregularity
of route topology change due to MANET’s dynamic nature. Some normal
nodes may temporarily suffer a high route request volume that exceeds these
thresholds.

Discussion: Comparing with the taxonomy of anomalous basic events in Table
1, we realize that a few of them cannot be detected effectively yet. First, we
cannot detect Route Message Modification with incoming packets in
which the modification patterns are not known in advance. We identify the
problem as it requires knowledge beyond a local node. However, these attacks
can usually be detected using other security mechanisms or by other nodes. If
the message comes from external sources, it may be successfully prevented by
a cryptographic authentication scheme. Otherwise (i.e., it was delivered by the

Attack Analysis and Detection for Ad Hoc Routing Protocols 19

routing agent from another legitimate node), the IDS agent running on that
node may have detected the attack. In addition, Rushing attacks cannot be
detected very effectively, especially when features beyond the routing protocol,
such as delays in the MAC layer, are involved. Our system can be improved if we
were able to extend our detection architecture across multiple network layers. It
is part of our future work.

5 Related Work

Many cryptographic schemes have been proposed to secure ad hoc routing proto-
cols. Zapata [Zap01] proposed a secure AODV protocol using asymmetric cryp-
tography. Hu et al. [HPJ02] proposed an alternative authentication scheme based
on symmetric keys to secure the DSR protocol [JMB01], because public key
computation appears too expensive for MANET nodes with limited power and
computation capabilities. As we have demonstrated, protection approaches are
suitable for a certain class of security problems. Intrusion detection approaches
may be more suitable to address other problems.

Vigna and Kemmerer [VK98] proposed a misuse intrusion detection sys-
tem, NetSTAT, which extends the original state transition analysis technique
(STAT) [IKP95]. It models an attack as a sequence of states and transitions
in a finite state machine. Whereas in our work, finite state machines are mod-
eled for normal events. Specification-based intrusion detection was proposed by
Ko et al. [KRL97] and Sekar et al. [SGF+02]. Specification-based approaches re-
duce false alarms by using manually developed specifications. Nevertheless, many
attacks do not directly violate specifications and thus, specification-based ap-
proaches cannot detect them effectively. In our work, we apply both specification-
based and statistical-based approaches to provide better detection accuracy and
performance.

Bhargavan et al. [BGK+02] analyzed simulations of AODV protocols. Their
work included a prototype AODV state machine. Our AODV EFSA is based on
their work but has been heavily extended. Ning and Sun [NS03] also studied the
AODV protocol and used the definition of atomic misuses, which is similar to
our definition of basic events. However, our definition is more general because
we have a systematic study of taxonomy of anomalous basic events in MANET
routing protocols.

Recently, Tseng et al. [TBK+03] proposed a different specification-based de-
tection approach. They assume the availability of a cooperative network monitor
architecture, which can verify routing request-reply flows and identify many at-
tacks. Nevertheless, there are security issues as well in the network monitor
architecture which were not clearly addressed.

6 Conclusion and Future Work

We proposed a new systematic approach to categorize attacks. Our approach
decomposes an attack into a number of basic events. We showed its use in attack

20 Yi-an Huang and Wenke Lee

taxonomy analysis. In addition, protocol specifications can be used to model
normal protocol behavior and can be used by intrusion detection systems. By
applying both specification-based and statistical-based detection approaches, we
have the advantages of both. Specification-based approach has no false alarm,
statistical-based approach can detect attacks that are statistical or temporal in
nature.

We proposed a taxonomy of anomalous basic events in MANET routing pro-
tocols and presented a case study of the AODV protocol. We constructed an
AODV extended finite state automaton specification. By examining direct vi-
olations of the specification, and by constructing statistical features from the
specification and applying machine learning tools, we showed that most anoma-
lous basic events were detected in our experiments.

Future Work: We plan to enhance our framework by automatically extracting
useful features for detection of unknown attacks. We also plan to design an intru-
sion detection system across multiple network layers to detect more sophisticated
attacks.

7 Acknowledgment

This work is supported in part by NSF grants CCR-0133629 and CCR-0311024
and Army Research Office contract DAAD19-01-1-0610. The contents of this
work are solely the responsibility of the authors and do not necessarily represent
the official views of NSF and the U.S. Army.

References

[BGK+02] K. Bhargavan, C. A. Gunter, M. Kim, I. Lee, D. Obradovic, O. Sokolsky,
and M. Viswanathan. Verisim: Formal analysis of network simulations.
IEEE Transactions on Software Engineering, 2002.

[Coh95] W. W. Cohen. Fast effective rule induction. In Proceedings of the Interna-
tional Conference on Machine Learning, pages 115–123, 1995.

[HFLY02] Y. Huang, W. Fan, W. Lee, and P. S. Yu. Cross-feature analysis for de-
tecting ad-hoc routing anomalies. In Proceedings of the 23rd International
Conference on Distributed Computing Systems, May 2002.

[HPJ01] Y.-C. Hu, A. Perrig, and D. B. Johnson. Wormhole detection in wireless
ad hoc networks. Technical Report TR01-384, Department of Computer
Science, Rice University, December 2001.

[HPJ02] Y.-C. Hu, A. Perrig, and D. B. Johnson. Ariadne: A secure on-demand rout-
ing protocol for ad hoc networks. In Proceedings of the Eighth Annual Inter-
national Conference on Mobile Computing and Networking (MobiCom’02),
September 2002.

[IKP95] K. Ilgun, R. A. Kemmerer, and P. A. Porras. State transition analysis: A
rule-based intrusion detection approach. Software Engineering, 21(3):181–
199, 1995.

Attack Analysis and Detection for Ad Hoc Routing Protocols 21

[JMB01] D. B. Johnson, D. A. Maltz, and J. Broch. DSR: The dynamic source
routing protocol for multi-hop wireless ad hoc networks. In C. E. Perkins,
editor, Ad Hoc Networking, chapter 5, pages 139–172. Addison-Wesley, 2001.

[KRL97] C. Ko, M. Ruschitzka, and K. N. Levitt. Execution monitoring of security-
critical programs in distributed systems: A specification-based approach. In
Proceedings of the 1997 IEEE Symposium on Security and Privacy, pages
134–144, 1997.

[KZG03] V. Kawadia, Y. Zhang, and B. Gupta. System services for ad-hoc routing:
Architecture, implementation and experiences. In First International Con-
ference on Mobile Systems, Applications, and Services (MobiSys’03), San
Francisco, CA, May 2003.

[Mal94] G. Malkin. RIP version 2 - carrying additional information. RFC 1723,
Internet Engineering Task Force, November 1994.

[MBJJ99] D. A. Maltz, J. Broch, J. G. Jetcheva, and D. B. Johnson. The effects
of on-demand behavior in routing protocols for multi-hop wireless ad hoc
networks. IEEE Journal on Selected Areas in Communications, August
1999.

[MGLB00] S. Marti, T. J. Giuli, K. Lai, and M. Baker. Mitigating routing misbehavior
in mobile ad hoc networks. In Mobile Computing and Networking, pages
255–265, 2000.

[NS03] P. Ning and K. Sun. How to misuse AODV: A case study of insider attacks
against mobile ad-hoc routing protocols. In Proceedings of the 4th Annual
IEEE Information Assurance Workshop, pages 60–67, June 2003.

[PBRD03] C. E. Perkins, E. M. Belding-Royer, and S. R. Das. Ad hoc on-demand dis-
tance vector (AODV) routing. Internet draft draft-ietf-manet-aodv-13.txt,
Internet Engineering Task Force, February 2003. expired 2003.

[PRDM01] C. E. Perkins, E. M. Royer, S. R. Das, and M. K. Marina. Performance
comparison of two on-demand routing protocols for ad hoc networks. IEEE
Personal Communications Magazine special issue on Ad hoc Networking,
pages 16–28, February 2001.

[SGF+02] R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang, and
S. Zhou. Specification-based anomaly detection: A new approach for de-
tecting network intrusions. In Proceedings of the ACM Computer and Com-
munication Security Conference (CCS’02), 2002.

[TBK+03] C.-Y. Tseng, P. Balasubramanyam, C. Ko, R. Limprasittiporn, J. Rowe, and
K. N. Levitt. A specification-based intrusion detection system for AODV.
In ACM Workshop on Security of Ad Hoc and Sensor Networks (SASN’03),
George W. Johnson Center at George Mason University, Fairfax, VA, Oc-
tober 2003.

[VK98] G. Vigna and R. A. Kemmerer. NetSTAT: A network-based intrusion de-
tection approach. In Proceedings of the 14th Annual Computer Security
Applications Conference, 1998.

[Zap01] M. G. Zapata. Secure ad hoc on-demand distance vector (SAODV) rout-
ing. Internet draft draft-guerrero-manet-saodv-00.txt, Internet Engineering
Task Force, August 2001. expired 2002.

[ZL02] Y. Zhang and W. Li. An integrated environment for testing mobile ad-
hoc networks. In Proceedings of the Third ACM International Symposium
on Mobile Ad Hoc Networking and Computing (MobiHoc’02), Lausanne,
Switzerland, June 2002.

