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Abstract. We perform host-based intrusion detection by construcsingodel
from a program'’s binary code and then restricting the pnogaexecution by
the model. We improve the effectiveness of such model-baedion detection
systems by incorporating into the model knowledge of thérenment in which
the program runs, and by increasing the accuracy of our readéh a new data-
flow analysis algorithm for context-sensitive recovery tatis data.

The environment—configuration files, command-line paransetand envi-
ronment variables—constrains acceptable process egaclEnvironment de-
pendencies added to a program model update the model to ifrentanviron-
ment at every program execution.

Our new static data-flow analysis associates a programesflimts with spe-
cific calling contexts that use the data. We use this analysisferentiate system-
call arguments flowing from distinct call sites in the pragra

Using a new average reachability measure suitable for atiatuof call-stack-
based program models, we demonstrate that our techniqpesvethe precision
of several test programs’ models from 76% to 100%.

Key words: model-based anomaly detection, Dyck model, static binaayyais, static
data-flow analysis.

1 Introduction

A host-based intrusion detection system (HIDS) monitorsoagss’ execution to iden-
tify potentially malicious behavior. In a model-based aadyHIDS or behavior-based
HIDS [3], deviations from a precomputed model of expectdtblveor indicate possible
intrusion attempts. An execution monitor verifies a stredéevents, often system calls,
generated by the executing process. The monitor rejects streams deviating from
the model. The ability of the system to detect attacks withdezero false alarms relies
entirely upon the precision of the model.

Static analysis builds an execution model by analyzing thece or binary code
of the program [5, 10, 14, 20]. Traditionally, static anayalgorithms are conserva-
tive and produce models that overapproximate correct gixecun particular, previous
statically constructed models allowed execution behayossible in any execution en-
vironment. Processes often read the environment—configarfiles, command-line
parameters, and environment variables known at processtilme and fixed for the
entire execution of the process. The environment can siginifiy constrain a process’
execution, disabling entire blocks of functionality andtreting the process’ access.



If the process can generate the language of event sequépaggen the current en-
vironmente, then previous program models constructed from staticyaisahccepted
the languagd.; = U;cpL; for E the set of all possible environmenfs, is a super-
set of L. and may contain system call sequences that cannot be gethératorrect
execution in environmerat

These overly general models may fail to detect attacks. kamele, versions of
the OpenSSH secure-shell server prior to 3.0.2 had a designtieat allowed users to
alter the execution of the root-level login process [19thé configuration file setting
“uselogin” was disabled, then the ssh server disabled theevable code. However, an
attacker who has subverted the process can bypass the dirsetbecks by directly
executing the vulnerable code. Previous statically caosstid models allowed all paths
in the program, including the disabled path. By executirgdisabled code, the attacker
can undetectably execute root-level commands.

In this paper, we make statically constructed program neogkatsitive to the execu-
tion environment. Arenvironment-sensitiygrogram model restricts process execution
behavior to only the behavior correct in the current envinent. The model accepts a
limited language of event sequendes whereL. C L, C L,. Event sequences that
could not be correctly generated in the current environraemtdetected as intrusive,
even if those sequences are correct in some other envirdnéine OpenSSH exam-
ple, if “uselogin” was disabled, then the model disallowsteyn calls and system-call
arguments reachable only via the vulnerable code pathsniduel detects an entire
class of evasion attacks that manipulate environment datdescribed in Sect. 7.4.

Environment dependencielaracterize how execution behavior depends upon en-
vironment values. Similar to def-use relations in statitaeffow analysis [15], an en-
vironment dependency relates values in the environmecit, asi “uselogin”, to values
of internal program variables. When an environment-sigesiIDS loads a program
model for execution enforcement, it customizes the mod#teocurrent environment
based upon these dependencies. In this paper, we manuwailyfyddependencies. Our
long-term goal is to automate this procedure, and in Se8twg. postulate that auto-
mated identification will not be an onerous task.

Environment sensitivity works best with system-call argumnanalysis. Our static
analyzer includes powerful data-flow analysis to recovaticslly known system-call
arguments. Different execution paths in a program may sgstem-call argument dif-
ferently. Our previous data-flow analysis recovered argumalues without calling
context, in that the analysis algorithm ignored the assiocisbetween an argument
value and the call site that set that value [9, 10]. In thiskyate encode calling context
with argument values to better model the correct executahrabior of a program. A
system-call argument value observed at runtime must mag&bdlling context leading
up to the system call. Additionally, the data-flow analysisvrcrosses shared object
boundaries, enabling static analysis of dynamicallyditikxecutables.

Although environment-sensitive program modeling is thepry focus of our work,
we make an additional contribution: a new evaluation mefiie existing standard met-
ric measuring model precision, average branching factwrlp evaluates models that
monitor a program’s call stack in addition to the systeni-stabam [5, 8]. We instead
use context-free language reachability to move forwarduph stack events to dis-



cover the next set of actual system calls reachable fromuhert program location.
Our newaverage reachability measufairly evaluates the precision of program models
that include function call and return events. Using the agereachability measure, we
demonstrate the value of whole-program data-flow analysisesmvironment-sensitive
models. On four test programs, we improved the precisioronfext-sensitive models
from 76% to 100%.

In summary, we believe that this paper makes the followingrioutions:

— Static model construction of dynamically-linked execugsabln particular, the static
analyzer continues data-flow analysis across sharedtdieadaries by learning
the API by which programs call library code, as describedant4.1.

— Context-sensitive encoding of recovered system-callmgnis, detailed in Sect. 4.2.
Combined with whole-program analysis, this technique mapd argument recov-
ery by 61% to 100% in our experiments.

— A formal definition of environment-sensitive program madahd methods to en-
code environment dependencies into statically constdymtegram models. Envi-
ronment sensitivity and static system-call argument regpimproved the preci-
sion of program models by 76% to 100%. Section 5 presentsvtrik.

— An extension to the commonly-used average branching fagdric suitable for
program models that require update events for functiors @adt returns (Sect. 6).
The average reachability measure provides a fairer cosgadf call-stack-based
models and other models that do not monitor the call stack.

2 Related Work

In 1994, Fix and Schneider added execution environmentrimdition to a programming
logic to make program specifications more precise [7]. Tlgéclbetter specified how
a program would execute, allowing for more precise analyisie program in a proof
system. Their notion of environment was general, inclugiraperties such as sched-
uler behavior. We are proposing a similar idea: use enviemtrinformation to more
precisely characterize expected program behavior in aranognodel. As our models
describe safety properties that must not be violated, wesfon environment aspects
that can constrain the safety properties.

Chinchaniet al. instrumented C source-code with security checks baseu eipa-
ronment information [1]. Their definition of environmenimarily encompassed low-
level properties of the physical machine on which a processwges. For example,
knowing the number of bits per integer allowed the authoriss$ert code into a pro-
gram to prevent integer overflows. This approach is speaflmbwn exploit vectors
and requires source-code editing, making it poorly suitg@tir environment-sensitive
intrusion detection.

One aspect of our current work uses environment dependeacgestatic analysis
to limit allowed values to system-call arguments. This #eproblem has received
prior attention.

Static analysis can identify constant, statically knowguanents. While extracting
execution models from C source code, Wagner and Dean iggh#fguments known
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(A) (B)
Fig. 1. Prior static argument recovery. Argument values recovalenly different execution paths
join together when the execution paths converge. (A) Thecaon between a specific argument
value and an execution path is lost. (B) If an argument vahreot be statically recovered on
any execution path leading to a system call, all other resal/g@alues must be discarded. The
argument is completely unconstrained

statically [20]. In earlier work, we used binary code ang\te recover arguments in
SPARC executables [9, 10]. These efforts suffered fromrsépeoblems:

— Earlier binary data-flow analysis required staticallykid executables. In this pa-
per, we use data-flow analysis to learn the API for a sharegtobjVhen analyzing
an executable, we continue data-flow analysis anywherétteey APl is used.

— Values recovered were not sensitive to calling contexts Thices two inaccura-
cies. First, the association between a system-call argtva&re and the execution
path using that value is lost (Fig. 1A). An attacker could etedtably use a value
recovered on one execution path on any other execution pdtietsame system
call. Second, if any execution path set an argument in a wayetgoverable stati-
cally, all values recovered along all other execution pathst be discarded for the
analysis to be safe (Fig. 1B). Our current work avoids thegeihaccuracies by
encoding calling context with recovered values.

— Static analysis cannot recover values set dynamicallyhis paper, we make a
distinction between dynamic values set at load time andegadet by arbitrary user
input. Environment dependencies augment static analysisiascribe how values
set when the operating system loads a process flow to systerguments.

Dynamic analysis learns a program model by generalizingiehobserved during
a training phase. Krueget al. [13] and Sekaet al. [16] used dynamic analysis to learn
constraints for system-call arguments. These constraiilitinclude values from the
environment that are used as part of a system-call arguwéith forces a tradeoff.
The training phase could modify environment values to leaganeral model, but such a
model fails to constrain later execution to the specific emvuinent. Conversely, training
could use only the current environment. If the environmeat ehanges, however, then
the model no longer characterizes correct execution angimegig becomes necessary.
By including environment dependencies described in thiepdearning could be done
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Fig. 2. Architecture

only for arguments not dependent upon the environment.reémrient dependencies
would resolve the remaining arguments to the current enwent every time the model
was subsequently loaded.

Environment-sensitive models are well suited to the madetying code execution
design. Sekaet al. proposed that unknown, untrusted executables can inchadiels
of their execution [16]. A consumer of the executable canaus®del checker to verify
that the model does not violate their security policy and>atation monitor to limit
the program’s execution to that allowed by the model. Theqgdducer must build the
program model, but they cannot know any consumer’s speciéiclgion environment.
To avoid false alarms, the model must be general to suit alipte environments. Such
a general model may not satisfy a consumer’s security poliajhe code producer
adds environment dependencies to the model shipped witbatie, the model will
automatically adapt to every consumer’s unique enviroriméfith the environment
constraints, the model is increasingly likely to satisfyoasumer’s security policy.

3 Overview

Model-based anomaly detection has two phases: constnuaftthe program model and
execution enforcement using the model. Environment geitgiaffects both phases.
Figure 2 shows the overall architecture of our system, oliolg how environment in-
formation is used in each phase. Analysis, at the left, ®oconce per program or shared
object. The global model builder assembles all executiodetsainto the single, whole-
program model. The panel on the right, execution monitgrotgurs every time the
program is loaded for execution.

The static analyzer builds a model of expected executiorebgrstructing and an-
alyzing control flows in a binary executable. The control flmedel that we construct
is the Dyck model, a context-sensitive model that uses &fstéte machine to enforce
ordering upon system-call events as well as correct funatall and return behav-
ior [10]. The static analyzer encodes environment depetidsiinto the Dyck model.



1void parse.args(int argc, char **argv)

2 char *tn = tenpnan(getenv("TWM"), "M");

3 int execnode = 1;

4 char c;

5

6 unlink("/home/ user/tnpfile");

7 while ((c = getopt(argc, argv, "L:")) I=-1)

8 switch (c)

9 case 'L':
10 execnode = O;
11 unlink (t n);
12 link(optarg, tn); unlink( ?)
13 br eak; unlink( ?)
14

15

16 if (execnode) exe¢"/ sbin/mail") link( ?, ?)
17 exed¢"/sbin/mail");

18}

Fig. 3. Example code, with calls to C library system-

call wrapper functions in boldface. Although we analyZdg. 4. A finite-state machine model
SPARC binary code, we show C source code for read-the code. System calls include
ability. For conciseness, we omit error-handling code coargument restrictions identified by
monly required when calling C library functions static data-flow analysis

Environment dependencies describe the relationship leetaevalue in the execution
environment and a variable in the program, as detailedéuithSect. 5.

A separate process, the runtime monitor, only allows p®egrscution that matches
the program model. The monitor resolves environment degerids in the Dyck model
given the actual environment in which the process is aboakézute. By parsing the
program’s command line, its configuration files, and theesy& environment vari-
ables, the monitor knows the execution environment whemgegating system loads
the program. It prunes portions of the model correspondirgptie unreachable in the
current environment by determining the directions thanhbhes dependent upon the
environment will take. It similarly propagates environrhealues along dependencies
to update system-call argument constraints before thetoredl process begins execu-
tion. The model used for execution verification thus enfenesstrictions arising from
environment dependencies.

Consider the example function in Fig. 3. Although the figureves C source code
for readability, we analyze SPARC binary code in our experita. This code uses
environment information in ways similar to many real progsa Theget env call
in line 2 returns the value of the environment variabl?, which typically speci-
fies the system’s directory for temporary files. The returdieelctory name is used by
thet empnamcall to construct a filename in the temporary directory. Trenéime is
used by thdink andunlink system calls in lines 11 and 12. Tiget opt function
call in line 7 parses options passed to the program via thevamd line and sets the
value of the C library global variablept ar g. The option “~L” requires one argument,
opt ar g, that is passed as an argumeniit at line 12. If the command line contains
the “—L" option, the case statement at line 9 will execute Hredexecat line 17 will



not execute. If “-L” is not present, then the opposite haldeexecwill execute but the
code inside the case statement will be skipped.

Figure 4 shows the finite-state machine model constructgusiceargsusing ear-
lier static analysis methods [9, 10]. This model overappmartes the correct execution
of the function:

— The argument to bothinlink calls is unconstrained, so an attacker could unde-
tectably delete any file in a directory to which the procedd$iarrite access. The
arguments are not statically recovered becausertliek at line 11 depends upon
a dynamic value, the environment variaBlgP. Both unlink calls target the same
C library system-call wrapper function. Data-flow analyafishe system-call argu-
ment will join the values propagating from both call sitesjraFig. 1B. Joining the
statically recovered value from line 6 with the unknown waftom line 11 forces
the analyzer to discard the known value.

— Both arguments ttink are unconstrained because they are computed dynamically
from the execution environment.

— The two system calls inside the case statement an@xbkesystem call are al-
ways accepted. In particular, all three calls would be aszkfwgether. The branch
correlation that forcesitherthe case statement or tagecto execute has been lost.

At first glance, theexeccall appears safe because static analysis can constrangits
ment value. However, due to the overapproximations in theéehdescribed above, the
model accepts a sequence of system calls that will executelbpsocess. The attack
first issues a nop call [21] and then relinks the staticalowered filename to a shell
before theexeccall occurs:

unlink (NULL) ; // Nop call
unlink ("/ sbin/mail");
link("/bin/sh*, "/sbin/mail");
exed"/sbin/mail");

Note that the attack requires the initial nop call becausértk transition in the model
is preceded by twanlink transitions.

Environment sensitivity and the static argument analysésented in this paper
repair these imprecisions and produce a program model #itdrlrepresents correct
execution. Context-sensitive encoding of system-calliamgnts will differentiate the
values passed from the two unique call sites touhknk system-call wrapper, en-
abling recovery of the static argument at the line 6 calleiten without recovering the
argumentat line 11. Adding environment dependencies thashyges the environment-
sensitive model shown in Fig. 5. The model is a template,aioimg dependencies that
must be resolved by the execution monitor.

The monitor instantiates the template model in the curremirenment. Suppose
the environment variabl&MP is set to/ t np. For a command line without “—L", the
unreachable case statement code is removed (Fig. 6A). Eocdmmand line <L
/ hone/ user /| og”, the monitor will prune the unreachabéxeccall and constrain
possible values to the remaining system-call argumengs 68). The model better re-
flects correct execution in the specific environment. In loatbes, the model prevents
the relinking attack previously described.



unlink( "/ home/ user /t npfile")

unlink( " [ TMP] / Mk. **)

exe¢"/sbin/mail") link("[L]", "[TMP]/M.*")

Fig. 5. The environment-sensitive model produced by the statityaea The model is a template,

containing environment dependencies that are resolved tigemodel is loaded. The symbols
L- andL+ are branch predicates that allow subsequent system cadis the command-line pa-

rameter “—L" is omitted or present, respectively. The vdllig is the parameter value following

“~L” on the command line. The valyeTMP] is the value of th& MP environment variable

unlink ("/ hone/ user/tnpfile")
unlink ("/ t np/ Mk. *")

unlink("/ home/ user/tnpfile")

exed "/ sbin/ mai ") link ("/ home/ user/log", "/tnp/ M.*")

(A) (B
Fig. 6. The environment-sensitive model, after the execution iotias resolved environment
dependencies. System-call arguments are encoded withgcatintext, so different calls ton-
link enforce different arguments. String arguments are regxjaressions. (A) When the com-
mand line does not contain “-L”, the code processing theoapis pruned from the model.
(B) When “—L" is present, thexeccall is unreachable and pruned

4 System-Call Argument Analysis

Our analyzer attempts to recover system-call argumentsathatatically known. It an-
alyzes data flows within program code and into shared objat¢ ¢o determine how
arguments may be constrained. The execution monitor eggagstrictions on any re-
covered system-call arguments and rejects any systeniaaHlttempts to use incorrect
argument values.

4.1 Learning a Library API

The object code of a programis linked at two distinct tin&stic linkingoccurs as part

of a compilation process and combines object code to formglesprogram or shared
object file.Runtime linkinghappens every time a program is loaded for execution and
links code in separate shared objects with the main exeleutatatic analyzers inspect
object code after static linking but before the final runtiing. Our analyzer simulates



the effects of the runtime link to build models for prograntsose code is distributed
among shared object files. This model construction has timgoy steps.

First, we analyze all shared objects used by a program. Wd madels for the
program code in each shared object and cache the models lofodifuture reuse.
Our program models include virtual memory addresses ofdtéraps and function call
sites; however, the addresses used by shared object codetdeeown until runtime
linking occurs. The analyzer perforragmbolic relocatiorior shared object code. Each
shared object s given its own virtual address space indaix@that is strictly symbolic,
and all addresses used in models reside in the symbolic ssldpace. When later en-
forcing a program model, our execution monitor detects tttead address at which
the runtime linker maps shared object code and resolvegrabalic addresses to their
actual virtual addresses.

Second, we analyze the binary executable of interest. Téeuable may call func-
tions that exist in shared object code. Our analyzer siragldie runtime linker’symbol
resolutionto identify the code body targeted by the dynamic functidh ttareads the
cached model of the shared object’'s code from disk and incates it into the pro-
gram'’s execution model.

The separate code analysis performed for each shared abjgéor the main exe-
cutable complicates data-flow analysis for system-callaxgnt recovery. System calls
generally appear only within C library functions. Frequgntowever, the argument
values used at those system calls are set by the main exkcatabpassed to the C
library through some function in the library’s API. Sepa&ranalysis of the library code
and the main executable code precludes our previous sttefldw analysis from re-
covering these arguments. The data flow is broken at theyilimgerface.

To remedy this problem, we now perforwhole-program data-flow analysi®
track data flowing between separate statically linked dbjées. The analyzer first
learns the API of a shared object. It initiates data-flow gsialat system-call sites with
type information for the call's arguments (e.g. integeruangnt or string argument).
Data-flow analysis follows program control flows in reversénd the instructions that
affect argument values. If any value depends upon a forngalhaent of a globally vis-
ible function, then that function is a part of the API thate&tfs system-call arguments.
We cache aata-flow summary functidi 7] that characterizes how data flows from the
API function’s entry point to the system-call site in the dthobject. For example, one
summary function for the C library stipulates that the firgfuanment of the function call
unl i nk flows through to the first argument of the subsequetink system call.

When later analyzing an object file that utilizes a learned, AR continue data-
flow analysis at all calls to the API. The analyzer attemptsttdically recover the
value passed to the API call. By composing the cached datasiilonmary function
with data dependencies to the API call site discovered vjaabloode analysis, we can
recover the argument value used at the system call insidithey.

4.2 Context-Sensitive Argument Recovery

Static argument recovery uses data-flow analysis to idesygtem-call values that are
statically known. The analysis recovers arguments usingtafheight lattice of values
and an algebra that defines how to combine values in thedafitiee lattice has a bottom



element (1) that indicates nothing is known about an argument becdiesargument
has not been analyzed. The top eleméniié the most general value and means that
an argument could not be determined statically.

Argument values may reach a system call via multiple, déffiéexecution paths, as
shown in Fig. 1. The algebra of the lattice defines how to camghe value that will
flow down the converged execution path. The join operatyrcombines values. Our
previous static argument analysis [10] recovered argusngsihg a standard powerset
lattice P. For S the finite set of statically known strings and integers usgthle pro-
gram, lattice values were elementsf = P(S) with Lp= () andTp = S. The
algebra joined arguments with set uniohlip B = AU B for A and B any lattice
values. The value reaching the system-call site is the exedvargument.

Joins in latticeP diminish the precision of the analysis. The set union dods no
maintain the association between an argument value andckéoeiion path using that
value. As a result, an attacker can undetectably use a vetwwered on one path on
any other execution path reaching the system call. Supp@segram opens both a
temporary file with write privileges and a critical file witlead-only access. Even if
argument recovery can identify all arguments, the calliogtext is lost. The attacker
can use the write privilege from the temporary-file open terofhe critical file with
write privilege as well.

Worse yet is the effect of values not recovered staticdllgnlargument cannot be
identified on one execution path, it takes the valye At a point of converging execu-
tion, such as the entry point of a C library function, the jofnl » with any recovered
value A discards the recovered value becadsep Tp = T p. This makes intuitive
sense: when monitoring execution, the monitor cannot deter when a recovered
value should be enforced without knowing the calling contdxthe value.

We solve this imprecision by extending the lattice domaimtdude calling con-
text. Our new data-flow analysis annotates the recoveredystind integer values with
the address of the call site that passes the strings or istegean argument. Stated
differently: we recover values usingsaparatepowerset lattice for each calling con-
text. As a data value propagates through a call instructf@analyzer annotates the
value with the return address of the call. We have found ttsitigle call site provides
enough context to sufficiently distinguish argument valaébough this analysis could
be extended to include additional calling context as neggsslote that the call site
annotation is not the call site nearest to the system cdllrdther the originating call
site where the argument is first set. The originating cadl siay target any function
in the program, including C library calls or arbitrary wrapgunctions around library
functions.

Data values recovered by our data-flow analysis are pdirs), whereA € Dp is
a set of integers or strings as above, aiglthe calling context information.

Definition 1. Let P be the powerset lattice over the $gof all statically-known strings
and integers used in the program, as defined above.et {c,...,c,} be call
site identifiers, withcy = () the special identifier indicating that no context informa-
tion is known. LetQ) be the context-sensitive data-flow lattice defined with doma
Do =P(Dp x C), Lo={(Lp,0)}, andTq = UL, {(Tr, ci)}-



callsite 1 callsite 2

call unlink call unlink unlink(" / hore/ user /| og") ink(?)
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Isite 1 Fig. 8. The model for the program code of
Fig. 3 with context-sensitive argument val-
unlink kernel trag ues. Note that the argument is constrained on

the top-mostunlink transition even though
the argument at anotheunlink call site
could not be statically determined

Fig. 7. Static argument recovery with context-
sensitive argument values

LetA, B € Do beA = {(A;,z;)}; andB = {(B;,y;)}; WithVi : A; € Dp, x; €
C;Vj:Bj € Dp,y; € C;andxy = () = yo. Define the join operatadrlg as:

Alg B ={(4i Up Bj,xi) |wi = y;} U 1)
U{(Al |_|p BQ,Ii) | ﬂj €Xr; = yj} U {(BJ |_|p Ao,yj) | ﬂl €Xr; = yj} . (2)

The join operation of) maintains calling context information at points of exeonti
path convergence. Part (1) joins values in the powerseatddttonly when those values
have identical calling context. Part (2) maintains comess when joining against a
value that does not yet have context: the value may occuryirpesviously-identified
context. The lattic&) improves prior data-flow analysis in two important ways:

1. The convergence of a context-sensitive value with anaovered value is non-
destructive. The analyzer can continue to propagate theknvalue with execu-
tion context (Fig. 7). Figure 8 shows the model for the exagolde with context-
sensitive arguments. The statically known filename passeidet first call toun-
link (call site 1 in Fig. 7) constrains that call. Intuitively, weed not discard the
recovered context-sensitive value because the monitamgte, can compare the
value’s context information with the executing procesd! stack to determine if
the argument restriction should be enforced.

2. When multiple context-sensitive values converge, normétion is lost. Distinct
calling contexts remain distinct. By preserving contex¢, @an enforce the asso-
ciation between multiple arguments passed to a system tcddlbasame call site.
Recall the previous example of opening both a temporary fitk & critical file
with different access privileges. Since our analysis wilhatate both the filename
and the access mode at each call site with that site’'s cadlimext, an attacker
cannot open the critical file with anything other than reatir@access.

The monitor enforces an argument restriction only when ttexetion path fol-
lowed to the system call contains the call-site addresstating the argument value.
The monitor walks the call stack of the process at every systdl to identify the call-
ing context of the system call. If the call-site address Hratotates a value exists in



the calling context, the monitor enforces the correspamdigument restriction. If no
argument was recovered for a particular context, the mowilbnot constrain allowed
values at runtime.

5 Environment-Sensitive Models

Environment-sensitive intrusion detection further riestrallowed process execution
based upon the known, fixed data in the execution environrgertronment-sensitive
program models do not include the data directly, but ratheode dependencies to en-
vironment data that will be evaluated immediately befoeefitocess begins execution.

We first formalize the notions of environment properties dagendencies between
the environment and a program.

Definition 2. Theenvironmenis program input known at process load time and fixed
for the entire execution of the process.

This includes environment variables, command-line pataragand configuration file
contents. The definition excludes environment variablesed or overwritten during
execution. In our measurements, only about 3% of the progiastalled with Solaris
8 modify at least one environment variable.

Definition 3. A propertyof the environment is a single variable, parameter, or config
uration setting in afile.

A property may be present or omitted in the environment, dmqfesent, may have an
associated value. An environment dependency capturegldi@on between environ-
ment properties and the program’s execution behavior.

Definition 4. Let E' be the set of all environments containing property et I be the
set of all non-environment program inputs. Uétlue(p, d, e, i) denote the possibly-
infinite set of values program poiptmay read from data locatiod given environment
e and program input. Anenvironment dependenexists between andp if

3f,d[Ve € E Vi€ I [Value(p,d,e,i) = f(p,x)]] .

In words: over all possible executions, a program data vatie depends only upon
the value ofc. The functionf characterizes how the data value depends upon the envi-
ronment property.

The definition is intuitively similar to the definition of a flase relation in pro-
gramming language analysis [15]. The environment defineata hlue that is later
used by the executing process. Where existing program semkxamine only rela-
tions between instructions in the program, we extend thenatf value definition to
the environment.

Dependencies are of interest only if they affect progranmakih visible to the exe-
cution monitor. We focus on two classes of dependenciel,dfat/hich are present in
the example code of Fig. &ontrol-flow dependenciexist at program branches where
the branch direction followed depends upon an environmapgrty.Data-flow depen-
denciesoccur when a visible data value, such as a system-call angumsalependent
upon the environment. The value of the environment proféotys to the system-call
argument.



unlink( "/ home/ user /t npfile")

unlink( ?)

exed"/sbin/mil") link(?, ?)

Fig. 9. Dyck model with environment branch dependencies. The sisiboandL+ are branch
predicates that allow subsequent system calls when the eooHine parameter “—L” is omitted
or present, respectively

5.1 Control-Flow Dependencies

Control-flow dependencies restrict allowed execution gdihsed upon the values of
the environment. The variable tested at a program branchbealependent upon an
environment property. For example, thé statement of line 16 guards tlexeccall
so that it executes only when “—L” is omitted from the comméind. The program’s
data variable used in the branch test is dependent upon &slii) Definition 4. As an
immediate consequence, the branch direction followed npapon “—L". Similarly,
theswi t ch statement at line 8 has an environment control-flow deperydgpon “—L”
and will execute thease at line 9 only when “~L" is present.

The static analyzer can encode control-flow dependendie#iia Dyck model with
predicate transitions. Figure 9 shows the model of Fig. & itedicate transitions
characterizing the environment dependency. The predicaigsatisfied only when the
command line does not contain “—L". Likewidet is satisfied when “—L" is present.

The execution monitor evaluates predicate transitionsvdbeding the model for a
program about to execute. Predicates satisfied by the eme@nt become-transitions.
An e-transition is transparent and allows all events followting transition. Conversely,
the monitor deletes edges with predicates that are nofisdtisy the environment, as
legitimate process execution cannot follow that path.éf¢bmmand line passed to the
example code of Fig. 3 does not contain “—L”, then thetransition in Fig. 9 will allow
the subsequergxecand thelL+ transition will be removed to prevent the model from
accepting the followinginlink andlink calls.

5.2 Data-Flow Dependencies

System-call argument values may also depend upon envimopneperties. In partic-
ular, programs frequently use environment values when cimgp strings passed to
system calls as filenames. These values can significantlyctabe allowed access of
the process, and hence an attacker that has subverted ttesgrin the example code
(Fig. 3), the environment variabTeVP gives the system temporary directory used as the
prefix to the filename argument of lines 11 and 12. The promemgtrains thenlink



at line 11 so that the only files it could remove are temporaeg fiThe parameter to
the command-line property “—L” fully defines the filename sEbas the first argument
to link . Many real-world programs exhibit similar behavior. Theathe web server,

for example, uses the command-line property “—d” to speitigy server’s root direc-

tory [11].

Environment data-flow dependencies augment existing rsystdl arguments re-
covered using techniques from Sect. 4. Figure 5 adds argudegendencies to the
previous model of Fig. 9. A bracketed environment propemtjidates that the argu-
ment is simply a template value and must be instantiated théhactual value of the
property at program load time.

Figure 5 is the completed environment-sensitive Dyck madlgsl context-sensitive
argument encoding. When the program of Fig. 3 is loaded fecetion, the monitor
reads the current environment and instantiates the modehirenvironment. Template
argument values are replaced with the actual values of thieoement properties upon
with the argument depends. The final, instantiated modg@lsan Fig. 6, as described
in Sect. 3.

5.3 Dependency Identification

This paper aims to demonstrate the value of environmersitaanintrusion detection
and does not yet consider the problem of automated depepdgentification. We
assume that environment dependencies have been precahoput@nually specified.
In our later experiments, we manually identified environhdpendencies vi-

erative model refinement a high-level, this process parallels counterexampiieted
abstraction refinement used in software model checkingddtluk model is an abstrac-
tion defining correct execution, and we iteratively refine thodel with environment
dependencies to improve the abstraction [2]. We monitorptbaess’ execution and
collected a trace of reachable and potentially malicioustesy calls as described in
Sect. 6. The trace included the calling context in which gaatientially malicious call
occurred. We inspected the program’s code to determinéiéei

— The argument passed to a call-site in the calling contexéxlégd upon environ-
ment information and reached the system call; or

— A branch guarded one of the call-sites and the branch priediegrended upon the
environment.

Function-call arguments and branch predicates dependthpanvironment if a back-
ward slice of the value reaches a function known to read tlvr@mment, such as
get env or get opt . We added the dependency to the Dyck model and repeated the
iteration. In practice, the number of dependencies addadteiative refinement was
small: each program in our experiments contained betweemd®4 dependencies.
Manual specification clearly has drawbacks. It requiresiges to understand low-
level process execution behavior and Dyck model charatiesi Manual work is error-
prose and can miss dependencies obscured by control-flavauth difficult to com-
prehend. However, we believe that dependency identificasimot limited to manual
specification.



We postulate that automated techniques to identify enuiemt dependencies with
little or no direction by an analyst are certainly feasit8emmary functions for C li-
brary calls that read the environment would enable ouriexjstatic data-flow analysis
to automatically construct environment-dependent exeawonstraints. Complex de-
pendencies could be learned via dynamic analysis. A dynaaée analyzer could
correlate environment properties with features of an etk@ctrace to produce depen-
dencies.

This paper makes clear the benefits of model specializatisadupon environment
dependencies. The improvements noted in Sect. 7 motivateetbd for implementation
of the techniques to automatically identify dependendiés.expect future work will
address these implementation issues.

6 Average Reachability Measure

Measurements of a model’s precision and its ability to pneegtacks indicate the ben-
efits of various analyses and model construction technidtresious papers have mea-
sured model precision using the average branching factoiag, 9, 10, 20, 22]. This
metric computes the average opportunity for an attacker hasosubverted a process’
execution to undetectably execute a malicious system Afiflr processing a system
call, the monitor inspects the program model to determires#t of calls that it would
accept next. All potentially malicious system calls in tleg, Such asinlink with an
unconstrained argument, contribute to the branching faxgtthe current monitor con-
figuration. The average of these counts over the entire ¢éwecof the monitor is the
average branching factor of the model. Lower numbers in€isetter precision, as there
is less opportunity to undetectably insert a malicious. ddle set of potentially mali-
cious system calls was originally defined by Wagner [22] amglfemained constant for
all subsequent work using average branching factor.

Average branching factor poorly evaluates context-semgitrogram models with
stack update events, such as the Dyck model used in this.ggpéral programs have
two characteristics that limit the suitability of averagariching factor:

— Programs often have many more function calls and returnsghstem calls. The
number of stack update events processed by the monitor @iffrbater than the
number of actual system-call events.

— Programs rarely execute a system-call trap directly. Rafiregrams indirectly
invoke system calls by calling C library functions.

These characteristics have important implications fonlioé stream of events observed
by the monitor and the structure of the Dyck model. The firstrabteristic implies that
stack updates dominate the event stream. The second @ava@tcimplies that at any
given configuration of the monitor, the set of events acakptxt are predominantly
safe stack update events that do not contribute to the coafign’s branching factor. In
fact, a potentially malicious system call is not visiblelas hext possible event until the
process’ execution path has entered the C library functidrtlae monitor has processed
the corresponding stack event for that function call. Thaber of potentially malicious
system calls visible to the monitor decreases, artificisiflgwing the computed average



Table 1.Test programs, workloads, and instruction counts. Infttmcounts include instructions
from any shared objects used by the program

|Prograni Workload |Instruction Count

procmailFilter a 1 MB message to a local mailbox. 374,103

mailx |Send mode: send one ASCII message. 207,971
Receive mode: check local mailbox for new emjail.

gzip Compress 13 MB of ASCII text. 196,247

cat Write 13 MB of ASCII text to a file. 185,844

branching factor downward. The call-stack-based modebiga precise as its average
branching factor makes it appear.

We have extended average branching factor so that it chyrrealuates context-
sensitive models with stack update events and does not glsailts. Ournverage reach-
ability measuraises context-free language reachability [23] to identigy det of actual
system calls reachable from the current configuration ofitbritor. Rather than simply
inspecting the next events that the monitor may acceptvégge reachability measure
walks forward through all stack events until reaching acsyatem calls. The forward
inspection respects call-and-return semantics of staehkteuo limit the reachable set
of system calls to only those that monitor operation coukehéwally reach. After each
actual system-call event, we recalculate the set of redelsgbtem calls and count the
number that are potentially malicious. The sum of these todinided by the number
of system calls generated by the process is the averageatabitghmeasure.

The average reachability measure subsumes average brgrfabtor. Both met-
rics have the identical meaning for context-insensitivelele and for context-sensitive
models without stack events, such as Wagner and Daastsact stacknodel [20], and
will compute the same value for these model types. Averagehability measures for
call-stack-based models may be directly compared agaieasunes for other models,
allowing better understanding of the differences amongénmus model types.

We implemented the average reachability measure usingabe* algorithm from
push-down systems (PDS) research [4]. We converted the Bpclel into a PDS rule-
set and generatgubst * queries following each system call. Thest * algorithm is
the same as that used by Wagner and Dean to operate theadlsséck model. Note
that we use the expensip®st * algorithm for evaluation purposes only; the monitor
still verifies event streams via the efficient Dyck model.

7 Experimental Results

We evaluated the precision of environment-sensitive ogmodels using average
reachability. A precise model closely represents the ogfor which it was con-
structed and offers an adversary little ability to executacks undetected. To be use-
ful, models utilizing environment sensitivity and our angent analysis should show
improvement over our previous best techniques [5, 10]. Ghpeograms, our static
argument recovery improved precision by 61%-100%. Addimgrenment sensitivity
to the models increased the gains to 76%—100%. We end bynarthat model-based
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Fig. 10. Precision of program models with increasing sensitivitgéda-flows and the environ-
ment. The y-axis indicates precision using éverage reachability measurthe average number
of reachable and potentially malicious system calls. Lom@mnbers indicate greater precision
and less opportunity for attack. All programs have 4 barss ltilsat do not show on the graph
have value less thah01

intrusion detection systems that ignore environment métion leave themselves sus-
ceptible to evasion attacks.

7.1 Test Programs

We measured model precision for four example UNIX prograrable 1 shows work-
loads and instruction counts for the programs tested. N@teihstruction counts in-
clude instructions from all shared objects on which the progdepend<?r ocnai |
additionally uses code in shared objects loaded explibitl{he program vial open.
As our static analyzer does not currently identify librarleaded withdl open, we
manually added the dependencies to this program.

These programs, our static analyzer, and our runtime monitoon Solaris 8 on
SPARC. The monitor executes as a separate process that&rpoecess’ execution via
the Solarig pr oc file system. To generate stack events for the Dyck model, the@tor
walks the call stack of the process before every systemasmatlone by Fengt al. [6].
By design, the full execution environment of the traced psscdis visible to the moni-
tor. The environment is actually passed to the monitor, Aedionitor then forks and
executes the traced process in that environment with am@maent-sensitive model.

7.2 Effects of Static Argument Analysis

We used average reachability to evaluate models constrdctehese four test pro-
grams. We compared three different versions of the Dyck maglag varying degrees

of static data-flow analysis (Fig. 10). We report two setsasitts formai | x because

it has two major modes of execution, sending and receivinigy that produce signifi-
cantly different execution behavior. Other programs withdes, such as compressing
or decompressing data gei p, did not exhibit notable changes in precision measure-
ments.



Table 2. Environment dependencies in our test programs. We manidalhtified the dependen-
cies via inspection of source code and object code

|Prograni Environment dependencies |

procmaile Program branching depends upon “—d” command-line argument
e Program branching depends upon “—r” command-line argument
e Filename opened depends upon user's home directory.

mailx |e Program branching depends upon “—T” command-line argument
e Program branching depends upon “—u” command-line argument
e Program branching depends upon “—n” command-line argument
e Filename created depends upon the parameter to the “~T" emanime argumedt.
e Filename opened depends upon T environment variable.

e Filename opened depends upon the user’'s home directory.

e Filename unlinked depends upon fAeP environment variable.

gzip e Argument tochown depends upon the filename on the command line.
e Argument tochmod depends upon the filename on the command line.
e Filename unlinked depends upon the filename on the commaad li
cat e Filename opened depends upon the filename on the command-lin

First, we used a Dyck model without any data-flow analysissigstem-call ar-
gument recovery. Although there is some overlap betweercouent test programs
and test programs previously used with a Dyck model [10], @iterate that the re-
sults computed here by the average reachability measurmeremparable to average
branching factor numbers previously reported for the Dyddei. Our current results
may be compared with previous average branching factor ewfbr non-stack-based
models [9, 20].

Second, we added system-call argument constraints to tek Dpdel when the
constraints could have been recovered by a previously teghanalysis technique [9,
10, 20]. Arguments values are recovered only when a valuecisvered along all ex-
ecution paths reaching a system call. If the value from ore@ton path cannot be
identified statically, then the entire argument value isnovin. Furthermore, any data-
flows that cross between a shared object and the programmsileced unknown. This
limited data-flow analysis improved model precision from @20%.

Last, we enabled all static data-flow analyses describe@@t. . Our new argu-
ment analysis improved precision from 61% to 100%.

7.3 Effects of Environment Sensitivity

We then made the models environment sensitive. For eachagmygve manually iden-
tified execution characteristics that depended upon emviemt properties. Stated more
formally, we defined the functionsof Definition 4 that describe data-flows from an en-
vironment property to a program variable used as a systéirargament or as a branch
condition. Table 2 lists the dependencies added to the Dyadeifor each program.
The system-call argument dependencies augmented valt@gered using the static
data-flow analyses presented in Sect. 4. Immediately befareution, the monitor in-
stantiates the model in the current environment by resglthe dependencies.
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Fig. 11. Percentage of potentially malicious system calls idemwtifig the average reachability
measure made safe by constraints upon their arguments. Ytle rDodel with no data-flow
analysis constrained no arguments

Figure 10 reports the average reachability measure for paajram’s execution
when monitored using these environment-sensitive modidslel precision has im-
proved from 76% gr ocnmi | ) to 100% @zi p andcat ). Bothgzi p andcat had
average reachability measures of zero, indicating thatlaaraary had no opportunity
to undetectably insert a malicious system call at any paieither process’ execution.

Successful argument recovery constrains system callsataathattacker can no
longer use the calls in a malicious manner. We evaluatedhitieyaof our techniques
to constrain system calls. Figure 11 shows the percentagmteitially malicious
system calls discovered during computation of the averagehability measure that
were restricted because of system call argument analygigmrironment-sensitivity.
In this figure, higher bars represent the improved congsaipon system calls that pro-
duced the correspondingly lower bars previously showngn . For three programs,
mai | X, gzi p, andcat , environment-sensitive models constrained 99-100% of the
potentially dangerous calls.

We expect environment-sensitive program models to affecperformance of run-
time execution monitoring. The monitor must both updategtagram model at load
time to remove paths unreachable in the current environmedtenforce context-
sensitive argument restrictions at every system call.ef@dhows the execution time
overhead arising from the model update and the more precisecement. These over-
heads are modest: about one-half second for the shortgn@mobssepr ocrmai | and
mai | x and two seconds for the longer-runniat . Although the overheads fpr oc-
mai | andnmi | x are high when viewed as a percentage of the original runtime,
occurs due to the shortlifetime of these processes and thé&arie upfront fixed cost of
pruning unreachable paths. Longer-lived processes sucatagive a better indication
of relative cost: here, 2.8%.

Further, improved argument recovery may increase the dizgogram models
as the model must contain the additional constraints. Hgragrams, environment-
sensitive models required 16 KB (2 pages) more memory thapck Bhodel with no
argument recovery or environment-sensitivity.



Table 3. Performance overheads due to execution enforcement usiitgiement-sensitive mod-
els.Model updatés the one-time cost of pruning from the model execution gatht allowed in
the current environment. Trenforcementimes include both program execution and verification
of each system call executed against the program’s model

Program No model updati‘jz Environment-sensitive Overhead
No enforcemenf| Model updatg Enforcement|  Total

procmail 0.55 4 0.41 9 0.67 1.08 g 0.53 g

mailx (send) 0.08 g 0.38 § 0.16 § 0.54 g 0.46 9

mailx (receive) 0.07 g 0.38 § 0.14 0.52 9 0.454

gzip 6.26 4 0.00 g 6.11 < 6.11 < 0.00 <

cat 56.47 4 0.00 5 58.06 4 58.06 g 1.59 g

We believe that these results strongly endorse our propesé@bnment-sensitive
intrusion detection. The precision measurements denairgtrat with the right analy-
sis tools, program execution can be safely constrainedet@dint that attackers have
little ability to undetectably execute attacks againstdperating system via a vulner-
able program. We certainly do not constrain all executioneikample, our models do
not enforce iteration counts on loops or verify data read otten to files. However,
we strongly limit process execution that can adverselycatfee underlying operating
system or other processes executing simultaneously.

7.4 Evasion Attacks

Intrusion detection systems that are not environmentisenare susceptible to evasion
attacks. These attacks mimic correct process executicsofoeenvironment [18, 21],
just not the current environment. To demonstrate the éff@ogss of environment sen-
sitivity in defense against such attacks, we designed anla#tgainsitrai | x that over-
writes command-line arguments stored in the process’ addgace to change the pro-
cess’ execution. Although the original command line pasedte program directed it
to check for new mail and exit, our attack changes the enwieant data so thatai | x
instead reads sensitive information and sends unwanteill ema

Our attack makes use of a buffer overrun vulnerability winen| x unsafely copies
the string value of thelOVE environment variable. We assume that the attacker can alter
the HOVE variable, possibly before the monitor resolves environntkpendencies.
The attacker changes the varialblVE to contain the code they wish to inject into
mai | x. The exploit follows the typical “nop sled + payload + addgzattern [12].

1. The first part consists of a sequence of nops (a “sled”)ekegeds the static buffer
size, followed by an instruction sequence to obtain thesturmddress on the stack.

2. The payload then rewrites the command-line argumentsemany. The change
to the command-line arguments alters execution so thatrtieeps will perform a
different operation, here sending spam and leaking inftona

3. The return address at the end of the payload is selectegberget opt so that
the new command-line arguments update appropriate stetbles. If necessary,
an evasive exploit can alter its reentry point so that notaudil system calls or



stack frames occur between the overflow and the resumed flawarlattack, reen-
tering atget opt was sufficient.

We implemented thewri | x exploit, loaded it viaHOVE, and caused the program
to read arbitrary files and send unwanted email. Since thiexd not introduce
additional system calls and reentered the original exeoyiath, the attack perfectly
mimicked normal execution for some environment, with oneegtion caused by the
register windows used by the SPARC architecture. To effelstimanipulate the return
address, exploit code must return froroadleefunction after corrupting the stack [12].
This “double return” makes exploit detection slightly easin SPARC machines, be-
cause an exploit that attempts to reenter a function akéusir addresses in a detectable
way. This attack limitation is not present on the more comx@®architecture.

Environment-sensitive models can detect these evasiaokatt The monitor re-
solves environment dependencies before process exedégins, and hence before
the attack alters the environment data. In this examplegxkeution paths thatai | x
followed subsequent to the attack, reading sensitive fitebs ssending email, do not
match the expected paths given the command-line input.

8 Conclusions

Program models used for model-based intrusion detectiarbeaefit from our new
analyses. Our static argument recovery reduces attacktoypyites significantly further
than prior argument analysis approaches. Adding enviromsensitivity continues to
strengthen program models by adding environment featarésetmodels. The useful-
ness of these model-construction techniques is shown irethdts, where the models
could severely constrain several test programs’ execution
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