
Hotspot-Based Traceback for Mobile Ad Hoc Networks

Yi-an Huang
yian@cc.gatech.edu

Wenke Lee
wenke@cc.gatech.edu

College of Computing
Georgia Institute of Technology

Atlanta, GA 30332

ABSTRACT
Traceback schemes are useful to identify the source of an at-
tack. Existing traceback systems are not suitable for Mobile
Ad Hoc Networks (MANET) because they rely on assump-
tions such as trustworthy routers and static route topology
that do not hold in the ad hoc platform. In this paper, we
propose a single-packet traceback solution that is extended
from the hash-based traceback scheme [19] but not relying
on these assumptions. In particular, our solution is fully
distributed and resilient in the face of arbitrary number of
collaborative adversaries.

In this paper, we develop a new technique, namely Tagged
Bloom Filters, as an efficient means to store additional in-
formation associated with each incoming packet. The ad-
ditional information can be used to accurately recover the
attack path when an attack packet is queried in a trace-
back session. Based on this technique, we propose several
distributed schemes, collectively called Hotspot-Based Trace-
back schemes, to defeat attacks under different security re-
quirements. We present the protocol design, study possible
security caveats and propose the corresponding countermea-
sures.

We present both theoretical and experimental results us-
ing ns-2 [8] simulations to show the effectiveness and effi-
ciency of our approach.

Categories and Subject Descriptors: C.2.0 [Computer-
Communication Networks]: Security and protection

General Terms: Security

Keywords: Intrusion response, traceback, ad hoc networks

1. INTRODUCTION
Mobile ad hoc networks (MANET) consist of a group of

wireless and mobile nodes where all nodes take part in for-
warding packets for each other. MANET is useful in scenar-
ios where infrastructure support is not available or cannot
be relied upon [10].

Since MANET makes use of existing protocols such as

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WiSE’05, September 2, 2005, Cologne, Germany.
Copyright 2005 ACM 1-59593-142-2/05/0009 ...$5.00.

TCP/IP, it suffers from many attacks in a similar way as
the wired networks do, especially IP spoofing attacks. How-
ever, a number of MANET specific vulnerabilities make ex-
isting traceback schemes designed for the wired networks
unsuitable. In particular, most of the techniques rely on
strong assumptions such as trustworthy routers and static
routes that are used by multiple packets in the same attack
flow. While these assumptions are typically valid in wired
networks, they generally do not hold in MANET.

The closest candidate that we can base our work on is
the Source Path Isolation Engine (SPIE) proposed by Sno-
eren et al. [19], which only requires a single attack packet as
evidence. The major problem with this scheme is its central-
ized design where a number of trusted global and regional
servers to collect and process information are required. In
a pure form of ad hoc networks, it is not always feasible to
find nodes that can be fully trusted. In this paper, we pro-
pose a fully distributed design without this requirement. In
addition, our protocol is able to reconstruct the attack path
even when the topology has been changed from the time the
path was actually used. The original SPIE protocol cannot
address this because it relies on static network topology.

We further address the problem when the victim may have
very limited resource to handle the necessary computation
under a heavy bandwidth consumption attack by proposing
three different protocols: Investigator Directed, Volunteer
Directed and Fast Filtering. We argue that by performing
differentiated response actions in different critical levels, we
can provide the best trade-off in terms of resource consump-
tion, usability and security.

The rest of the paper is organized as follows: Section 2
presents a formal definition of the problem and assumptions.
Section 3 compares a number of existing traceback schemes.
We address the SPIE framework in particular, as it is used
as our base framework. Section 4 present the basic mech-
anisms that are used in our protocols. Section 5 discusses
the three hotspot-based protocols. Section 6 shows experi-
mental results where we show the effectiveness and efficiency
of our protocols. Section 7 reviews the related work. The
paper is concluded in Section 8.

2. PROBLEM STATEMENT
The original traceback problem defined in the wired net-

work attempts to identify the true identity of the source of
an attack packet. In this paper, we study how to identify
at least one malicious node that involves in the attack that
is being investigated. The original problem is much harder
to be addressed in a highly vulnerable environment such as

MANET, because a malicious router may modify any packet
it forwards in an arbitrary way and it is not always possible
to reveal the original source based on the modified packet.

2.1 Environment
The MANET environment is generally considered as a

peer network. In other words, no node should be trusted
more than others. In some special cases, reliable servers
may be available (an access point in a hybrid network may
be such an example), but any of them becomes a single
point of failure because the number of these reliable servers
is typically much smaller than the number of peer mobile
nodes. In general, a scalable protocol in MANET should
not rely on the availability of any reliable nodes.

We assume that an Intrusion Detection System (IDS) agent,
which may or may not reside on the victim host (for exam-
ple, the cluster-based agent [12]), can detect intrusions on
behalf of the victim. Therefore, the traceback can be trig-
gered even if the victim itself is compromised. In this paper,
we refer to the IDS agent that triggers a traceback session
as the investigator.

We further assume that there may be multiple collabora-
tive adversaries and any mobile node in an ad hoc network
may be compromised by an adversary.

2.2 Secure Communication
In the protocols discussed in this paper, a broadcast au-

thentication protocol is required as the underlying mecha-
nism for the traceback protocols. There are several choices.
The common choice utilizes public-key cryptography in a
self-organized fashion [5]. Alternatively, we can use light-
weighted symmetric cryptography based on one-way hash
chains and time synchronization, such as TESLA [11] or
µTESLA [15]. Both asymmetric and symmetric primitives
have their advantages and disadvantages. In our protocols,
we prefer public-key signatures. Since traceback is infre-
quent, it introduces little impact on the overall performance.

We assume that a pre-deployment key establishment pro-
tocol, such as [14], is in place so that key credentials are
stored securely in every node during the system initializa-
tion stage. The key credentials may be revealed, but only
when the node who holds the credential is compromised.
In general, node compromise may require significant efforts.
Therefore, we also assume that there will be no node being
newly compromised during a traceback session.

Furthermore, we assume that traceback messages will even-
tually reach their destinations as long as the network is fully
connected. First, a reliable transmission protocol, such as
TCP, is used to prevent accidental packet loss due to wire-
less congestion or other transmission errors. Second, in or-
der to mitigate the problem where packets may be inten-
tionally dropped by intermediate malicious routers, a num-
ber of existing solutions can be considered. One possible
solution is to explore the network for alternative uncom-
promised paths [10], if there are multiple paths available
to the destination and the adversary cannot control all of
them. Another approach is to require that any router that
transmits an authenticated traceback message must ensure
that the packet is forwarded by the next hop correctly, us-
ing either neighbor monitoring [16] or IDS based solutions.
Since we use a reliable transmission protocol, a message
being dropped by an intermediate router will result in re-
transmissions and thus monitoring techniques, for example,

a statistics-based IDS [12], can be used to detect such an
attack. Note that the source addresses of the traceback
messages cannot be spoofed because they are always au-
thenticated. This eliminates the need to run tracebacks re-
cursively.

Note that we do not require normal traffic to be secured in
a similar way as the traceback protocols does, because not
all protocols or applications can afford the computational
costs implied by the authentication schemes.

2.3 Goals
The best result from a traceback solution in the wired net-

work is an attack path from the adversary site to the victim
site. Many wired traceback schemes consider only one ma-
licious attack source, and assume that intermediate routers
are secure and reliable. In MANET, these assumptions do
not hold and thus alternative approaches are needed. In
addition, the “first-hop” problem also has to be addressed
differently: the attack source may be aware of being traced,
thus the best a traceback scheme can do is to identify the
first (gateway) router that forwards the attack flow. In a
typical wired environment, the adversary and the gateway
router belongs to the same administrative domain where au-
dit logs and other local measures often provide sufficient
clues to identify the adversary. In MANET, there are no
equivalent administrative domains with a physical bound-
ary, thus making the problem much harder.

In this paper, we propose a different approach what we
call hotspot-based traceback. A hotspot is a suspicious
area where one or more unknown adversaries may reside
or resided and it is covered by the transmission range of a
particular node. The node itself may or may not be mali-
cious. Once a hotspot is identified, offline or online investi-
gation can be conducted there to identify the exact identity
of the adversaries. Solutions ranging from neighbor monitor-
ing [16], physical security [21, 6] to human intelligence may
be used. Our protocols rely on these underlying mechanisms.
It should be noted that there may be multiple hotspots de-
tected in a single traceback. However, hotspot analysis is
generally expensive, thus our goal is to find the hotspots as
accurate as possible.

We present the related concepts and a more formal prob-
lem statement below.

2.4 Definitions
Formally, we define an attack path of a specific packet P

as the transmission path from the attack source to the vic-
tim. A path does not contain loops, branches, or duplicated
nodes.

We say a node (or router) is malicious or compromised
if it can perform arbitrary actions that do not follow nor-
mal behavior. Otherwise, it is referred to as well-behaving or
non-malicious. Let us define an AP fragment as a consecu-
tive sequence of well-behaving routers within the attack path.
The whole attack path can thus be seen as an interleaving
sequence of compromised routers and AP fragments. We
define an observable AP fragment, OAF , as an AP frag-
ment where all routers compute the same digest1 of packet P
as the victim does. Since packet headers may be modified by
compromised routers, not all AP fragments are observable.
However, we know the last OAF which ends at the victim
must be observable based on the definition of an OAF . We

1We will define the digest function in Section 3.1.

define this special OAF as the essential attack path, or
EAP . Note that the victim itself may or may not be in-
cluded in EAP , depending on whether it is well-behaving
or not.

A hotspot-based traceback scheme is then expected to dis-
cover the well-behaving router(s) next to one of the mali-
cious nodes as a hotspot. In addition, a malicious node not
in the attack path may want to mislead the traceback in-
vestigation by providing false information. Our approach
would identify such node directly as a hotspot, thus thwart-
ing these types of attacks.

B1 G1 B2 G3 G4 B4 G5 G6 V

Attack Path (AP)

unobservable
AP

Fragment

observable
AP

Fragment
(OAF)

Essential
Attack

Path (EAP)

B3G2

Figure 1: Attack Path

Figure 1 illustrates the example of an attack path from the
attack source B1 to the victim V . Assume all B nodes are
malicious (bad) and all G nodes are well-behaving (good).
Further assume B3 alters the packet digest, while B4 does
not (it can still introduce other attacks as we will show later),
then we can identify two observable AP fragments, including
the EAP , as shown in Figure 1. The hotspot-based scheme
may not identify the attack source B1 because G1 is not
observable any more. But it would find at least some (if
not all) of the three hotspots (shown in dash circles) cen-
tered at G3, G4 and G5, respectively, because B3 and B4

are malicious.
To summarize, the traceback problem can be addressed

with hotspot-based traceback by finding at least one true
hotspot and perform hotspot analysis on these hotspots. In
the rest of this paper, we focus on the problem of how to
detect hotspots.

3. PREVIOUS PROTOCOLS
Many existing traceback protocols are not suitable for

MANET. We illustrate two major problems. First, dynamic
topology is a key characteristic of MANET in that the ac-
tive route between any source-destination pair may vary
from time to time. Packet-marking based traceback tech-
niques [18, 20, 24], for example, assume that the same rout-
ing path is used by all packets within a single attack flow
and thus cannot work effectively in MANET.

Another issue is the trustworthiness of intermediate routers
that forward the attack packet. In wired networks, the ma-
jority of core backbone routers are well protected and can be
assumed secure in most scenarios. Many traceback schemes
rely on this assumption.

3.1 The Source Path Isolation Engine (SPIE)
Let us first review some of the basic elements in the SPIE [19]

approach.

Infrastructure: In this framework, every SPIE-enabled
router runs a Data Generation Agent (DGA) where a Bloom
filter [3] based digest table is used to store the digests of
all packets it forwards. The Bloom filter provides a space-
efficient probabilistic membership testing structure, the de-
tails of which will be examined in Section 4.2. In addition,
there are multiple SPIE Collection and Reduction (SCAR)
agents where each SCAR agent is responsible for collecting
results from all DGA within a network region. Finally, SPIE
Traceback Manager (STM) controls the whole SPIE system.
If an attack packet is detected, a traceback request that con-
tains the digest of the attack packet is sent to STM, which
in turn asks all SCARs in its domain to poll their respective
DGAs for the relevant packet digest. An SCAR periodically
collects the digest tables from its regional DGA agents. A
partial attack path can thus be reconstructed by examining
the DGA tables in the order they would have been queried
if a reverse-path flooding were conducted. Eventually, the
attack graph is fully reconstructed by combining the partial
graphs from all SCARs.

Digest Input: In the SPIE framework, the digest is com-
puted based on the hash of the 20-byte IP header plus the
first 8 bytes of packet payload. Only non-mutable fields
in the header are used. This excludes fields such as Type

of Service, TTL, and Checksum. It is shown that the non-
mutable fields can identify most packets uniquely with the
collision rate less than 0.001% percent in a wide area network
and 0.15% in a local area network [19]. It should be noted
that valid IP packets might be transformed while travers-
ing the network. Examples are fragmentations and ICMP
messages. Packet transformation is addressed efficiently in
SPIE with a transform lookup table, where the additional
storage requirement is minimized.

The major problem to apply the SPIE scheme in MANET
is that a central authority (STM) and a number of regional
agents (SCAR) are required. We have asserted that the re-
quirement for these hosts to be fully trusted is too strong for
MANET. Instead, we propose a different distributed scheme,
namely, Hotspot-Based Traceback.

4. BASIC MECHANISMS

4.1 Overview
First, let us assume that the investigator for a traceback

session itself is well-behaving. This requirement will be re-
laxed later in Section 4.6.

Given this assumption, a natural alternative to the SPIE
infrastructure is to use the investigator as the replacement
of STM and all SCAR agents. The investigator first broad-
casts a query that contains the digest of an attack packet and
then collects responses from all routers that have previously
forwarded the packet. The dynamic topology in MANET,
however, makes the subsequent attack path reconstruction
problem much harder. Without a global route topology, we
cannot know the order of the routers in the original attack
path without additional information. One possible solution
is to require every router to remember the timestamp when a
packet was forwarded, but comparing the timestamps pro-
vided by different routers requires (securely) synchronized
clocks, which may be expensive.

Instead, we require each router to record two measures:
the TTL value observed from the forwarding IP packet (Sec-

tion 4.3) and the neighbor list, i.e., the nodes within its own
transmission range (Section 4.4). An attack graph can then
be constructed by finding all edges between two neighbor-
ing nodes, where two nodes become neighbors if they have a
TTL difference exactly by one and/or they are in the neigh-
bor lists of each other. Finally, the hotspots can be detected
based on the constructed attack graph. We note that both
TTL and the neighbor list may be inaccurate due to the
existence of malicious nodes and other factors, but it does
not prevent us from using them effectively to detect true
hotspots. We illustrate the Attack Graph Construction Al-
gorithm and Hotspot Detection Algorithm in Sections 4.5 and
4.6, respectively.

4.2 Tagged Bloom Filter
The TTL value must be stored along with every packet a

router forwards. Maintaining a separate lookup table has a
huge storage requirement, and thus defeats the purpose of a
Bloom filter. In this subsection, we present an extension to
the basic Bloom filter to address this problem.

A Bloom Filter [3] is used in SPIE to provide efficient
probabilistic membership testing. The basic structure con-
sists of a bit table with m bits and k independent hash
functions that each maps an input value to an index into
the table. Initially, all bits are set to zeroes. When an ele-
ment x is inserted, the hashes of x produce k indices and the
corresponding bits are set. Later, if the membership of an
element y is queried, we compute the hashes of y and assert
that y is a valid member if and only if all k bits at these
indices are set.

The hash functions must be chosen randomly from a uni-
versal hash family so that the hash results are uniformly and
independently distributed. Although not required in SPIE,
we expect the hash functions to have the property of second
preimage resistance (i.e., it is hard to find a different element
that has the same hash of a known element). Without this
requirement, a compromised node can fabricate an attack
packet that is indistinguishable from a non-attack packet,
which complicates our design. In practice, we generate a
series of k hash functions using the keyed hash function
HMAC-SHA1 with k different random keys. We use the
HMAC function because it is popular and implemented in
many crypto libraries. A more efficient hash function, such
as UMAC [2], may also be used.

We propose an extension of the basic Bloom filter where
an additional tag associated with an element can be stored.
It is called a Tagged Bloom Filter or TBF. It can be im-
plemented with only minimal modification to the underly-
ing data structure: instead of a single bit, multiple bits are
stored in each table entry2. Let us assume c bits are nec-
essary for each tag. Our algorithm, however, allows only
2c − 2 valid values ∈ [0, 2c − 3]. 2c − 2 and 2c − 1 have spe-
cial meanings, which are hereby referred to as the invalid
tag and the empty tag respectively.

Initially, all entries are initialized to the empty tag (which
is equivalent to set 1s on all bits. Note that this is different
from the basic Bloom filter). The insert operation for an
element with tag t examines the k entries corresponding to
the element: if an entry contains the empty tag, it is changed
to t; otherwise it is changed to the invalid tag to indicate

2The Counting Bloom Filter presented in [9] also uses
multiple-bit entries, but it serves a different purpose and
its operations are different.

insert(element, t) {
∀ i ∈ [1, k] {

if TBF[hi(element)] = 2c − 1
TBF[hi(element)] ⇐ t

else
TBF[hi(element)] ⇐ 2c − 2

end
}

}

test(element) {
if ∃ TBF[hi(element)] = 2c − 1

return 2c − 1
else

return mini∈[1,k](TBF[hi(element)])
end

}

Figure 2: Tagged Bloom Filter Operations

that a conflict has occurred. Finally, a membership test
operation returns either the empty tag if at least some of
the k entries are empty, the invalid tag if all entries contain
conflicts, or the smallest tag value from all valid entries. We
illustrate these operations in Figure 2.

It should be noted that a TBF always has zero false neg-
ative rate, i.e., query for any element that has been inserted
will always be successful. However, an effective TBF must
ensure both the invalid tag rate and false positive rate, the
probabilities when an invalid tag is returned and when all k
entries are set but the element was never inserted, are suf-
ficiently small. After n items are inserted, the probability
that a particular entry is not used by any of the nk hashes
is (1−1/m)nk. Hence, the invalid tag rate can be computed
as

µ =

1 −

„

1 −
1

m

«kn
!k

≈ (1 − e−kn/m)k

Similar analysis can show that the ǫ, the false positive rate,
is equal to µ. We summarize ǫ and µ in Table 1.

Table 1: Tagged Bloom Filter: Probability Matrix
returned tag

t 2c − 2 (invalid) 2c − 1 (empty)

never inserted ǫ 1 − ǫ

inserted with tag t 1 − µ µ 0

We observe that ǫ (or µ) is minimized when k = m
n

ln 2,

which yields ǫmin =
`

1
2

´m

n
ln 2

≈ 0.6185
m

n . The storage re-
quirement can then be computed as cm, or cnk/ ln 2 bits if
the optimal k is used.

4.3 Relative TTL

Definition 1. We define the c-bit Relative TTL, or RTTL,
of packet P as

RTTL(P) ≡ TTL(P) mod (2c − 2)

where TTL(P) comes from the IP header of P .

Lemma 1. Assume packet P is forwarded from router A
to router B where both A and B are well-behaving, the RTTL

values for P stored on A and B satisfy

RTTLA(P) = RTTLB(P) + 1 (mod 2c − 2).

Proof. The proof immediately follows the fact that when
a well-behaving router forwards P , the TTL field is always
decremented by one. Note that we cannot guarantee this if
either A or B is malicious.

When an incoming packet P is observed, a router adds
the packet to TBF with RTTL(P) as the associated tag. In
order to determine c, the bit-storage requirement for each
table entry, we need to bound the maximal length of a nor-
mal route so that no two routers in a consecutive sequence
of well-behaving routers will have the same RTTL values.
The parameter can be determined based on the underlying
routing protocol and network topology settings. In the sce-
narios used in our simulations, we choose c = 4, because a
maximal route length of 24 − 2 = 14 is sufficient for most
scenarios.

The TTL field may be modified by a compromised router
in the attack path. However, if we only consider an observ-
able AP fragment (such as the essential attack path EAP),
we can guarantee that the RTTL values stored on all routers
in the same OAF are continuous and monotonically decreas-
ing (in modulo arithmetic).

4.4 Local Neighbor Lists
Even though the invalid tag rate is fairly small, the chance

that at least one router returns an invalid tag in a long at-
tack path can be much larger. This may prevent the at-
tack graph from being fully reconstructed. As a remedy,
we obtain the local connection topology from all matching
routers. More specially, we obtain NL(A) from router A,
the set of neighbors that were within its transmission range
when the packet was forwarded. It can be obtained us-
ing the standard HELLO broadcast technique: a node A
broadcasts a HELLO(A) message with TTL=1 during ev-
ery HELLO_INTERVAL. Node B which receives the HELLO(A)
will include A in its NL(B). The entry will be expired after
one HELLO_INTERVAL, unless a subsequent HELLO(A) has
arrived by that time. Note that we do not require HELLO
messages to be authenticated. Therefore, it is possible for a
malicious node to hide its own address completely or mas-
querade as another node. Even without a malicious neigh-
bor, the neighbor list may not be identical to the topology
when the packet was actually forwarded, due to wireless col-
lision and node mobility. To ensure that neighbor lists can
return useful results, we assume that the global parameter
ρ, defined below, should be sufficiently close to 1.

Definition 2. ρ is defined as the lower bound of Pr(A ∈
NL(B)) for all distinct node pairs A and B, given that A
and B were well-behaving neighbors of each other when a
packet was forwarded within the latest HELLO_INTERVAL.

4.5 Attack Graph Construction
At the end of a traceback session for an attack packet

P , an investigator collects summaries in the form of Si ≡
{Ri, RTTLRi

(P),NL(Ri)} from all routers where P was
matched. We assume that the investigator also generates a
summary on behalf of the victim, of which the RTTL tag
is always valid because it is obtained directly from the at-
tack packet. We note that other summaries may come from
three sources: well-behaving routers that match the digest;

Algorithm 1:

1 Attack_Graph({Ri , RTTLRi
(P), NL(Ri)}, V IC, c) {

2 V ⇐ {R1, R2, . . . }
3 E ⇐ {}
4 ∀ x, y ∈ V s.t.
5 (RTTLy(P) 6= 2c − 2
6 ∧ RTTLx(P) = RTTLy(P) + 1 (mod 2c − 2)
7 ∧ x 6= V IC)
8 E ⇐ E ∪ {x→y}
9 ∀ x ∈ V s.t. (RTTLx(P) = 2c − 2) {

10 ∀ y, z ∈ V s.t.
11 (x ∈ NL(y) ∧ x ∈ NL(z)
12 ∧ RTTLz(P) 6= 2c − 2
13 ∧ RTTLy(P) = RTTLz(P) + 2 (mod 2c − 2)
14 ∧ y 6= V IC) {
15 val = RTTLz(P) + 1 (mod 2c − 2)
16 Generate a pseudo node xval

17 ∀ yi, zi ∈ V s.t.
18 (RTTLyi

(P) = RTTLy(P)
19 ∧ RTTLzi

(P) = RTTLz(P))
20 E ⇐ E ∪ {yi→xval, xval→zi}
21 }
22 }
23 return AG ≡ 〈V , E〉
24 }

well-behaving routers with a false positive in its TBF; and
arbitrary malicious nodes. Algorithm 1 returns an attack
graph AG based on the summaries, where V IC is the ad-
dress of the victim.

The algorithm runs in O(|V |2) in the worst case. First,
lines 4-8 (case 1) add a route edge x → y if x and y have
consecutive and valid RTTL tags. Second, lines 9-22 (case
2) add two route edges y → x → z if x has an invalid tag but
both y and z have valid tags that are differed by two and
they are both neighbors of x. If there is another satisfying
sequence u, x,w where x may be assigned a different RTTL,
we add route edges for them as well (since adversaries may
add arbitrary neighbor relationships, allowing only one such
sequence may introduce attacks that prevent the true edges
from being added). By generating a pseudo x separately for
each possible RTTL tag (line 16), we prevent invalid path
traversals, such as y → x → w in the previous example.
Pseudo nodes with different tag values are considered differ-
ent nodes, therefore may be traversed within a single route
path.

Figure 3: Attack Graph Example

Figure 3 illustrates a possible output from Algorithm 1
with c = 4 where letters A through J denote the output
vertices and the arrows represent the output edges. The

dashed lines reflect the local connection topology obtained
from the neighbor lists, i.e., x and y are dash-connected if
either x ∈ NB(y) or y ∈ NB(x). I → J and D → E → F
demonstrate cases 1 and 2, respectively.

The following theorem shows that with high probability,
an edge in some OAF is embedded in the output attack
graph AG. We note that EAP , the final OAF , should in-
clude V IC because the investigator, on behalf of the victim,
is assumed to be well-behaving.

Theorem 1.

Pr(E ∈ AG|E ∈ some OAF) ≥ (1 − µ)2(1 + λµρ2)

where µ is the invalid tag rate defined in Section 4.2 and λ is
the number of well-behaving sibling routers of E. Node z is a
sibling router of edge E = x → y if either z → x or y → z
is in the attack path. An edge that connects to the victim
is considered to have an additional (virtual) well-behaving
sibling router on its right.

Proof. Assume the attack path consists of L nodes: R0 →
R1 . . . → RL where R0 is the attack source and RL is the
victim. We also add a virtual well-behaving RL+1 after RL

to simplify the discussion. For each Ri, we define V (Ri) to
be the event that Ri returns a summary and it contains a
valid RTTL tag, i.e., V (Ri) ≡ RTTLRi

(P) < 2c − 2.
Consider edge Ei = Ri → Ri+1 where i ∈ [1, L − 1] and

both Ri and Ri+1 are well-behaving, we have:

Pr(Ei ∈ AG) ≥ Pr(V (Ri) ∧ V (Ri+1))

+ ρ2Pr(V (Ri) ∧ ¬V (Ri+1) ∧ V (Ri+2))

+ ρ2Pr(V (Ri−1) ∧ ¬V (Ri) ∧ V (R2))

(4.1)

where the first term comes from case 1 (Algorithm 1), while
the second and third come from case 2. Also note that
Definition 2 guarantees that Pr(Ri ∈ NL(Ri+1)) ≥ ρ and
Pr(Ri+1 ∈ NL(Ri)) ≥ ρ.

We now derive Pr(V (Ri)). First, it may be arbitrarily
small if Ri is malicious. Second, Pr(V (RL)) = 1 because
the investigator always returns a valid RTTL on behalf of the
victim. Otherwise, Pr(V (Ri)) = 1−µ. By computing (4.1)
using these Pr(V (Ri)) values, we prove the theorem.

Based on Theorem 1, the probability that the essential
attack path of length l is fully embedded in the output attack
graph is

PEAP (l, µ,ρ) =
Y

i

Pr(Ei ∈ AG)

≥ (1 − µ)2l(1 + 2µρ2)l−1(1 + µρ2).

For instance, PEAP (13, 0.00781, 0.85) ≥ 0.938. It corre-
sponds to the longest path with the number of bits per entry
c = 4, the number of hashes k = 7, and ρ = 0.85.

4.6 Hotspot Detection
Theorem 1 shows that with high probability, every ob-

servable AP fragment OAF is fully embedded in the output
attack graph, i.e., OAF ⊆ AG. Algorithm 2 searches for all
possible hotspot(s) in AG based on this result where IV is
the address of the investigator and τ is a parameter to be
determined. In this algorithm, we define a V -path to be a
maximal path embedded in AG that ends at victim V IC.

A V -path is maximal in the sense that any V -path is not
a proper subset of another V -path. We refer to the first τ
nodes of a V -path as its head with size τ .

Algorithm 2:

1 Hotspot({RTTLRi
(P)}, AG = 〈V , E〉, V IC, IV , c,

2 τ) {
3 S ⇐ {IV }
4 T ⇐ {}
5 Find all V -paths using a reverse depth-first
6 search from V IC
7 ∀ V -path V P ≡ R1→R2→ . . .→V IC {
8 T ⇐ T ∪ all nodes in V P
9 S ⇐ S ∪ {R1, R2, . . . Rτ}

10 }
11 ∀ x ∈ V − T s.t. (RTTLx(P) 6= 2c − 2
12 ∧ (¬∃z s.t. x→z ∈ E
13 ∨ ¬∃y s.t. y→x ∈ E)) {
14 S ⇐ S ∪ {x}
15 }
16 return S
17 }

Lines 5-6 in Algorithm 2 find all V -paths by performing a
depth-first search on the reverse graph of AG (obtained by
reversing the directions of all edges in AG) and returning
the (forward) paths from each leaf to the root V IC. Lines
7-10 return the head of every V -path with size τ as hotspots.
Theorem 2, to be given soon, shows that with high probabil-
ity, at least one true hotspot can be found through V -path
searching. Lines 11-15 find additional hotspots within nodes
that do not have a V -path to V IC. Here, a node x is iden-
tified as a hotspot if it does not have either an outgoing or
an incoming edge. It can only happen if (a) x is malicious,
(b) x is the first node of an OAF , or (c) x is the last node
of an OAF . In all these cases, x is a hotspot.

We relax the earlier assumption that the investigator must
be well-behaving here, by including IV directly (line 3) as
a hotspot. This is useful because it thwarts a potential at-
tack where a malicious investigator starts a traceback with
a normal packet captured elsewhere.

Figure 4 demonstrates an example attack graph where Q
is the victim. Algorithm 2 returns {A, O}. They correspond
to V -paths A → · · · → N → O → P → Q and O → B →
· · · → N → A → P → Q (there are two other V -paths,
but they also return either A or O). Consider a different
attack scenario where H is compromised and chooses not to
respond, the algorithm will return {I, G} instead, and we
can see that H becomes a hotspot target.

Note that the true EAP may be one of these V -paths,
but it is not necessary for us to find out the exact EAP , be-
cause the number of possible V -path heads are much smaller
than the number of V -paths. The following theorem further
characterizes the V -path searching procedure.

Theorem 2. V -path searching Given that every OAF
is fully embedded in AG with high probability (P0), the prob-
ability that V -path searching in Algorithm 2 returns at least

one true hotspot is at least P0(1 − ǫτ ′

) where τ ′ = min(τ ,
minimum length of all V -paths).

Proof. If there is a V -path with length 1, i.e., it contains
V IC only, V IC is obviously a hotspot and the theorem is
proved. Otherwise, assume that there is at least one V -path
V P with length > 1 and w is the first node of V P .

D

10

9

8

7

6 5 4

3

3

5

4

13

11

12

0

2

1

A

B C

E

F

G

H

I

J
K

L

M

N

O P

Q (VIC)

Figure 4: Hotspot Detection Example

Define an equivalent set of v to be the set of all nodes with
RTTL = v (V IC is a special case that does not belong to
any equivalent set). If RTTLw(P) = x, we call W the equiv-
alent set of x (i.e., ∀w′ ∈ W,RTTL′

w(P) = RTTLw(P)),
and U the equivalent set of x − 1 (mod 2c − 2). The con-
struction of AG guarantees that ∀u ∈ U ∧ w ∈ W , edge
u → w ∈ AG. Since w is the head of V P , either there is no
node in U or all nodes in U are connecting to other nodes
in W somewhere in V P . Hence, |U | < |W |.

For all w′ ∈ W , by simply exchanging w and w′ in V P ,
we can obtain another valid V -path with w′ as its head (of
size 1). Therefore, we have W ⊆ S, i.e., either all nodes in
the same equivalent set will be returned as hotspots or none
of them will be returned.

Assume that every OAF is fully embedded in AG and
there is no false positive outputs from the TBF of a well-
behaving node, i.e., ǫ = 0. We can assert that there is at
least one node w′ in W that is either malicious or the first
node of an OAF , in other words, a hotspot. Otherwise,
every node in W must have a preceding well-behaving node
in the same OAF that must be in U . Thus, we should have
|U | ≥ |W |. This leads to a contradiction.

We now consider the general case ǫ ≥ 0. A false positive
node has the same effect as a malicious node, but the algo-
rithm will fail if we only return false positives as hotspots.
The probability that a false positive is chosen as the head
(with size 1) of a V -path is at most ǫ. Therefore, the proba-
bility that all τ ′ nodes in the head of every V -path are false

positives is at most ǫτ ′

.

Furthermore, we can bound the total number of hotspots
returned by Theorem 2. First, note that a normal route does
not exceed 2c − 2 hops. A compromised router B, however,
can break the maximum-length rule by (1) introducing an
artificial TTL gap so that two well-behaving routers sepa-
rated by B may have the same RTTL tag, (2) forwarding
the packet through a non-optimal route. Given that a single
B can only increase the maximum route length by at most
2c −2, we can derive that an attack path containing at most
q compromised routers will have at most 1+q well-behaving
nodes in any equivalent set, therefore at least 1

2+q
outputs

from V -path searching are true hotspots.

5. HOTSPOT-BASED TRACEBACK PROTO-
COLS

Bloom Filter Capacity: The digest table, implemented
as a Tagged Bloom Filter (TBF), is used to record the pack-
ets captured at each router. It is sufficient to only store the
traffic within the most recent TRACEBACK_INTERVAL, which
is defined as the largest time gap between the time a router
recorded a packet and the time the packet may be queried for
the purpose of traceback. TRACEBACK_INTERVAL is associated
with the capability of IDS agents: The faster an IDS agent
can detect attacks, the shorter the TRACEBACK_INTERVAL has
to be. Note that TRCEBACK_INTERVAL may be larger than
HELLO_INTERVAL. It introduces a problem because the neigh-
bor list when a traceback is triggered may not be consistent
with the one when the packet was forwarded. The prob-
lem can be solved by maintaining a set of buffers where
each buffer Bi ≡ 〈TBFi, NLi〉 stores the data for each
HELLO_INTERVAL. To guarantee that the needed buffer can
be available within TRACEBACK_INTERVAL, we only need to
maintain up to max = TRACEBACK_INTERVAL

HELLO_INTERVAL
+ 1 buffers and reuse

them cyclically. When a packet is queried, we start with
the most recent buffer and check backwards if there is no
match in the current buffer, until all max buffers have been
checked.

Protocol 1 - Investigator Directed: We first introduce
the basic protocol, where the investigator sends out trace-
back request, collects the response from all matching routers,
and computes the hotspot list. The protocol involves three
rounds:

• Request The investigator broadcasts a traceback re-
quest to the entire network. The request is defined as
INV(vic, iv, seq, hash)3. , where vic and iv are
the addresses of the victim and the investigator respec-
tively, hash is the digest of the attack packet P, and
seq is a sequence number that is automatically incre-
mented by the investigator for every new INV in order
to prevent replay attacks.

• Reply Every node responds to the INV message by query-
ing its digest table, after it determines that the mes-
sage contains a valid signature and is not a dupli-
cate. If the digest table contains no match, the re-
quest is silently ignored. Otherwise, the router sends
a summary of its own results, ACK(vic, seq, router,

rttl, nl), back to the investigator, where the router’s
address, the RTTL tag associated with the packet, and
the neighbor list associated with the matching TBF are
included.

• Collection The investigator waits for the worst-case RTT
(round-trip time) plus the largest router processing
time to ensure that all matching routers have responded.
It then runs the Attack Graph Construction Algorithm
(Algorithm 1) and the Hotspot Detection Algorithm
(Algorithm 2) sequentially. A list of hotspots is re-
ported to an offline authority where hotspot analysis
will be conducted.

Protocol 2 - Volunteer Directed: The Investigator Di-
rected protocol suffers from the bandwidth consumption at-
3Although we do not state explicitly, all protocol messages
use the broadcast authentication protocol to protect its au-
thenticity and integrity.

tack where the investigator may not have sufficient resources
to receive and handle all ACK messages. One solution is to
give priority to ACK messages and other traffic may be dis-
carded if necessary. However, the adversaries may still be
able to launch Denial-of-Service attacks with bogus ACK mes-
sages because verifying the authenticity of an ACK message
is a non-trivial operation. Instead, we propose a new proto-
col, namely Volunteer Directed. It chooses a number of third
party nodes that perform ACK collection and hotspot com-
putation independently. One possible way to choose these
nodes is to deploy behavior-based trust management [16] so
that only the most trusted servers are used. We propose
here a more general solution that does not require such an
infrastructure. It is similar to Investigator Directed but with
the following differences:

1. Two additional fields, rttl and nl, containing the
RTTL tag and the neighbor list observed by the vic-
tim, are attached to the INV message.

2. Every router that receives INV determines whether it
wants to be a volunteer with probability α, prior to
digest table lookup. If it volunteers, a VLT(vic, seq,

volunteer) message is broadcast.

3. A matching router caches the ACK message. Instead of
being sent to the investigator, the cached ACK message
is transmitted to a volunteer from whom a valid VLT

message is received. To ensure the cache size does
not increase infinitely, an expiration time is associated
with every cached ACK.

4. A volunteer performs the same Collection round as per-
formed by the investigator in Protocol 1.

By having multiple volunteers, the communication over-
head slightly increases. Hence, one may prefer to suppress
duplicated volunteers when the first volunteer broadcasts
its intent. However, this can also help adversaries because
a malicious node can volunteer quickly to suppress others,
and then never deliver the hotspot list to the offline author-
ity. There is another more serious problem. We can ensure
that a malicious node does not forge summaries from well-
behaving routers because they are signed (the signature can
be examined by the offline authority if necessary). But a
malicious node can deny that some summaries have ever
been received, thus changing the attack graph and eventu-
ally altering the resulting hotspot list. Unless a complicated
protocol that implements non-repudiation is used, this sit-
uation cannot be prevented. Our approach, instead, is to
keep multiple volunteers with the hope that at least one of
them is well-behaving.

Protocol 3 - Fast Filtering: In the third protocol, we
consider the most critical scenario: the investigator requires
immediate response to filter out the attack flows. We de-
fine an attack flow as a number of attack packets deliv-
ered from the same attack source but possibly with different
(spoofed) source addresses. The previous protocols require
offline analysis and are thus not suitable to guide packet
filtering. Instead, we can deploy a Fast Filtering approach
where filtering is conducted on the routers that actually for-
ward the attack packet in real-time. This protocol works by
assuming the topology does not change too frequently, thus
most of these routers will still be used to forward subsequent
packets in the same attack flow.

A straightforward approach requires all routers that con-
tain a matching digest of an attack packet to drop subse-
quent traffic destined for the victim. The major problem
with this approach is false positives. Not only does the at-
tack flow get dropped, normal flows destined for the victim
may use these routers as well, and thus suffer from the un-
conditional dropping. Instead, our approach assigns a differ-
ent dropping probability for each router based on its distance
to the victim. Intuitively, a smaller dropping probability
should be used on a router closer to the victim, because the
chance that this router is used by normal flows is likely to
be larger.

Assume we choose a dropping probability pi for a router
whose distance to the victim is i, the Fast Filtering protocol
can then be briefly described as follows. A matching router
R estimates its distance to the victim as i = (RTTLR −
RTTLV IC) (mod 2c − 2). It then adds a filter rule that
drops all packets destined for the victim with probability pi.
The filtering rule can later be removed if so requested by the
victim.

How to assign these probabilities optimally is a hard prob-
lem. We illustrate one solution based on a simplified theo-
retical analysis with a random compromise model. Consider
a uniform distribution in an infinitely large map where each
node has d neighbors (Figure 5). The sources of the traffic
destined for V are randomly distributed, while the optimal
route with the shortest path can always be found. We as-
sume every node may be compromised with probability β.
Assume the attack path is X to V , where X is the attack
source and V is the victim. We assume that the attack path
contains k intermediate routers, R1 to Rk, where the index
stands for the distance to V .

Figure 5: An Ad Hoc Network with Uniform Distri-
bution (d = 6)

First, we observe that there are i×d nodes that are i hops
away from V . Therefore, the probability that a node which
is at least i hops away from V chooses Ri in its route to V
is 1

id
. Hence, the probability that a packet from a random

source to V uses router Ri (but not Ri+1) is 1
i(i+1)d

. In this

case, we denote Ri as the first filtering router of this packet.
Assume that router Ri drops any packet destined for V

with probability pi. A compromised router would never drop
attack packets, but drop packets in normal flows with prob-
ability pi

4. We define PA as the probability that an attack
packet from X is dropped and PB as the probability that a
normal packet is dropped. The objective of the optimization

4A slightly different attack model can use probability 1 in-
stead. We do not address this variation here but the analysis
will be similar.

problem can be defined by maximizing PA while requiring
PB to be no more than γ, the highest loss rate that can be
tolerated on normal traffic.

An attack packet is not dropped when all intermediate
routers are either compromised or not dropping the packet
(with probability 1 − pi). A normal packet is not dropped
when all routers from Ri to R1 choose not to drop it where
Ri is the first filtering router of the packet. The optimization
problem can thus be formalized as:

maximize PA = 1 −
k
Y

i=1

(1 − pi(1 − β)), given

PB =

k
X

i=1

1

i(i + 1)d
(1 −

i
Y

j=1

(1 − pj)) ≤ γ

The optimal solution to this problem can be given by p1 =
· · · = pi−1 = 0, pi = (dγ+ 1

k+1
)i(i+1)−i, pi+1 = · · · = pk =

1, where i = ⌊ 1

dγ+ 1
k+1

⌋. The optimal PA is 1 − βk−i(1 −

pi(1 − β)).
In practice, we do not know k precisely. An estimation

with the average route length can be considered as an alter-
native.

6. SIMULATION RESULTS

6.1 Platform Setup
To evaluate the hotspot-based traceback protocols, we use

ns-2 [8], a well known simulator that is widely used for evalu-
ating ad hoc protocols. We use the two-ray ground reflection
radio propagation model and the AODV [17] routing proto-
col. Our scenarios contain 25 nodes randomly deployed in
a square space of 2,500 m by 300 m to guarantee that the
average route length is not too short. The radio transmis-
sion rage is 250 m. We deploy 20 source-destination pairs
with UDP/CBR (Constant Bit Rate) traffic and the aver-
age traffic rate is 4 packets per second (we also tested TCP
traffic and the results are similar). Each experiment lasts
for 1,000 seconds and the average results of 10 experiments
are reported.

We use a random waypoint model with maximum velocity
= 20 m/s and pause time = 50 seconds to show the effective-
ness of our scheme in a high mobility scenario. The number
of bits per RTTL tag c = 4, and the size of a V -path head
τ = 1. These parameters are used throughout our experi-
ments unless stated otherwise.

We assume that it is sufficient to store traffic within the
last minute for traceback purposes, i.e., TRACEBACK_INTERVAL
= 60 seconds. We choose HELLO_INTERVAL to be 5 seconds,
by which our simulation shows the neighbor list consistency
probability ρ ≥ 0.85 under different levels of mobility.

6.2 TBF Storage Requirement
It is important to estimate the storage requirement be-

cause a TBF must be fully stored in memory to support
real-time membership queries. For simplicity at this mo-
ment, assume a large TBF is used where all incoming packets
within the most recent TRACEBACK_INTERVAL are recorded.
Assume the average packet size is 1,000 bits, the number of
bits per RTTL tag c = 4, the number of hashes k = 7 (which
corresponds to a false positive rate ǫ or invalid tag rate µ ≈
0.0781%). We first consider a normal operating environment

that delivers the user experience similar to a DSL connec-
tion where the average bandwidth does not exceed 1Mbps.
A TBF-enabled router needs 1M/1000∗60∗4∗7/ ln 2 ≈ 2.4M
to store a TBF table for one minute’s data, which should not
be a constraint for most modern devices. Secondly, we con-
sider the worst case where a high-end scenario with the full
capacity provided by the 802.11a or 802.11g wireless stan-
dard is used and the maximum bandwidth over a wireless
link is 54Mbps. The footprint rises to about 131M . While
this is affordable even based on commodity hardware, the
requirement can be heavily reduced in practice because the
achievable bandwidth is much lower due to wireless colli-
sion and other physical constraints. Instead, a straightfor-
ward linear directory where each entry contains a 160-bit
SHA-1 packet digest and a 4-bit tag will take approximately
(160 + 4) ∗ 54M/1000 ∗ 60 = 531M for one-minute storage
of traffic with full 802.11a(g) capacity.

In our simulations, we choose HELLO_INTERVAL to be 5
seconds so that a total of 60/5 + 1 = 13 buffers are used.
A careful reader would find out that the worst-case false
positive rate with the same k will be larger when multiple
(and smaller) buffers are used. By using k = 11, we ob-
tain the same false positive rate compared with a full TBF
when k = 7. This corresponds to the memory footprints
of 3.8M and 206M in the low-end and high-end scenarios
respectively.

6.3 Hotspot Detection
In order to evaluate the effectiveness of the Hotspot Detec-

tion Algorithm, we use a random compromise model, where
every node may be compromised with an equal probability
β. We consider the following two attacks:

1. A router in an attack path is compromised and modi-
fies the TTL field to a random value.

2. A compromised node sends a summary for a traceback
session with a random RTTL and a random neighbor-
ing list.

Note that a compromised router that performs Attack 1
will also perform Attack 2 with probability β in response to
a traceback request or simply not respond.

We use the detection rate, the probability when at least
one true hotspot is detected from V -path searching, as the
effectiveness measure. We also use the average number of
false hotspots per traceback session as the efficiency measure,
because it reflects the extra overhead when hotspot analysis
is performed. Figure 6(b) shows both measures when the
compromise level β ranges from 0 to 1 with different values
of c, the number of bits for each RTTL tag. We observe that
the false hotspot number decreases when the compromise
level increases, because the V -path searching will more likely
to stop at a malicious router under a high compromise level.
We also observe that the false hotspot number decreases
significantly when c changes from 2 to 3 but the difference
is hardly distinguishable when c changes from 3 to 4. It
shows that most routes does not exceed 23 − 2 = 6 hops.
This matches the topology setting used in our experiments.
In the mean time, the detection rate increases slightly when
the compromise level increases because it becomes less and
less likely for a false-positive well-behaving node to be the
head of a V -path. Overall, we can obtain 85% accuracy in
detecting at least one true hotspot while the average false
hotspot number is less than one in the worst case.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H
ot

sp
ot

 D
et

ec
tio

n
ac

cu
ra

cy

Compromise level

detection rate c=2
detection rate c=3
detection rate c=4
false hotspot number c=2
false hotspot number c=3
false hotspot number c=4

(a) Tag Bit-Size vs. Hotspot Detection Accuracy

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H
ot

sp
ot

 D
et

ec
tio

n
ac

cu
ra

cy

Compromise level

detection rate tau=1
detection rate tau=2
detection rate tau=3
false hotspot number tau=1
false hotspot number tau=2
false hotspot number tau=3

(b) V -path Head Size vs. Hotspot Detection Accuracy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

F
as

t F
ilt

er
in

g
E

ffi
ce

nc
y

Filter Index

PA beta=0.1
PA beta=0.4
PA beta=0.7
PB beta=0.1
PB beta=0.4
PB beta=0.7

(c) Fast Filtering Efficiency in a Static Graph

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

F
as

t F
ilt

er
in

g
E

ffi
ce

nc
y

Filter Index

PA beta=0.1
PA beta=0.4
PA beta=0.7
PB beta=0.1
PB beta=0.4
PB beta=0.7

(d) Fast Filtering Efficiency in a Mobile Graph

Figure 6: Hotspot-Based Protocol Performance

To show similar curves for different τ values, we lower the
maximum capacity of each TBF (to the tenth of its optimal
size) so that the false positive rate becomes much higher.
Figure 6(a) shows both measures where τ varies from 1 to 3
(c is fixed to 4). We can see that the detection rate benefits
from a larger τ , but the false hotspot number suffers. In
general, τ must be chosen properly to provide a good trade-
off between the detection rate and the false hotspot number
if TBFs with a smaller capacity have to be used due to
memory constraints. In normal scenarios with the optimal
TBF parameters, we observe that τ = 1 is typically good
enough.

6.4 Fast Filtering
To evaluate the Fast Filtering protocol, we choose a single

attack path from each scenario and apply fast filtering on all
routers in this attack path. The filter index FI is defined
as: 1 ≤ FI ≤ L, where L is the total number of routers in
the attack path. We set the dropping probability for router
Ri (where i is the distance to the victim) as follows: ∀i <
FI, pi = 0; otherwise pi = 1. For the purpose of illustration,
we first use a static topology (pause time = 1,000 s). We vary
the compromise level β, and observe the attack dropping
rate PA and normal dropping rate PB when various FI
values are used in Figure 6(c). We see the similar behavior
as the theoretical analysis shows: in a low compromise level,
PA is sufficiently close to 1, where the highest filter index

can be used. In a medium or high compromise level, PB
decreases with a larger filter index, but PA decreases as
well. Therefore, the optimal point should be defined at the
smallest FI where PB does not exceed the pre-determined
upper bound γ. For instance, if γ = 0.5, we can choose
FI = 3, where PA ≥ 0.8, even in a high compromise level.

We then experiment with a mobile topology (pause time
= 50 s). In Figure 6(d), we can see that the attack drop-
ping rate becomes lower but a similar pattern as the static
scenarios can be observed in both rates.
Summary: The simulations show that our traceback ap-
proaches are effective and efficient in detecting hotspots. In
addition, we can use fast filtering techniques to effectively
filter out attack traffic with high accuracy.

7. RELATED WORK
IP traceback schemes include hop-by-hop tracing [4], out-

of-band ICMP traceback [1], in-band probabilistic packet
marking [18, 20, 24] and watermark-based [23] techniques.
Since they are designed for the traditional wired networks
(more specifically, the Internet) where the core infrastruc-
ture is well protected, the effectiveness of these solutions
rely heavily on the assumption that the intermediate routers
would not be compromised. Some solutions require a cen-
tralized management server, others assume the global rout-
ing topology to be static and thus may be obtained or cached

locally as guidance. As we have discussed in Section 2, none
of these assumptions can be guaranteed to hold in a typical
MANET environment. It should be noted that our trace-
back scheme does not attempt to detect invalid source ad-
dresses, therefore our work is different from the detection of
address duplication [22].

Without an effective Intrusion Detection System (IDS)
that produces accurate and timely intrusion alerts, trace-
back and other response techniques would simply be fu-
tile. Unfortunately, most traditional IDS solutions [7] are
centralized and thus not suitable for MANET without a
lot of modification. One of the earliest work that tries to
address the problem is the “watchdog” system [16], where
malicious behavior is detected through neighborhood mon-
itoring. Node-based and cluster-based IDS approaches [12,
13] provide a general-purpose detection framework based on
protocol specification analysis and statistical learning tools.
Successful experience in detecting many known attacks has
been reported based on these approaches. For example, de-
tection of several forms of DoS attacks such as Blackhole
(also known as Sinkhole) and Sleep Deprivation Torture, can
be done [12].

8. CONCLUSION
In this paper, we presented a distributed traceback ap-

proach where no trustworthy infrastructure is needed. Dif-
ferent from other traceback systems, we showed that in our
scheme, a single packet can be effectively used in traceback
even when the routing topology has been changed. Thus, our
scheme is very suitable for MANET that consists of mobile
nodes. Our algorithms are able to detect the approximate
locations where adversaries reside (but not necessarily the
original attack source), even in the face of arbitrary number
of adversaries. Furthermore, we presented several traceback
protocols. In particular, we showed that a network-wide fil-
tering scheme can be implemented effectively on top of the
traceback framework so that its impact on normal traffic is
minimal.

Our system requires a traceback to be triggered promptly
by an investigator. Otherwise, the digests will be lost after
some fixed interval. Although it may be desired to traceback
a historical packet when later evidence suggests that it is
intrusive, we cannot lengthen the time window infinitely due
to memory constraints. One possible solution is to trade off
larger memory footprint with possibly slower access time.
That is, we can utilize disk storage to store old Bloom filters.
Since real-time analysis is seldom needed in this case, the
trade-off is typically acceptable.

9. REFERENCES

[1] S. M. Bellovin. ICMP traceback messages. Internet draft
draft-bellovin-itrace-00.txt, Network Working Group, Mar.
2000. expired 2000.

[2] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway.
UMAC: Fast and secure message authentication. In Proceedings
of the 19th Annual International Cryptology Conference on
Advances in Cryptology (CRYPTO’99), pages 216–233,
London, UK, 1999. Springer-Verlag.

[3] B. H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Communications of ACM, 13(7):422–426,
July 1970.

[4] H. Burch and B. Cheswick. Tracing anonymous packets to their
approximate source. In Proceedings of the USENIX LISA
Conference, Dec. 2000.

[5] S. Capkun, L. Buttyán, and J.-P. Hubaux. Self-organized
public-key management for mobile ad hoc networks. In
Proceedings of the ACM International Workshop on Wireless
Security (WiSe’02), 2002.

[6] S. Capkun, J.-P. Hubaux, and L. Buttyán. Mobility helps
security in ad hoc networks. In Proceedings of the Fourth
ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc’03), 2003.

[7] S. Cheung and K. N. Levitt. Protecting routing infrastructures
from denial of service using cooperative intrusion detection. In
Proceedings of the New Security Paradigms Workshop,
Cumbria, UK, Sept. 1997.

[8] K. Fall, K. Varadhan, and the VINT project. The ns Manual
(formerly ns Notes and Documentation), 2000.

[9] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache:
a scalable wide-area Web cache sharing protocol. IEEE/ACM
Transactions on Networking, 8(3):281–293, 2000.

[10] Y.-C. Hu, A. Perrig, and D. B. Johnson. Ariadne: A secure
on-demand routing protocol for ad hoc networks. In
Proceedings of the Eighth Annual International Conference
on Mobile Computing and Networking (MobiCom’02), Sept.
2002.

[11] Y.-C. Hu, A. Perrig, and D. B. Johnson. Packet leashes: A
defense against wormhole attacks in wireless networks. In
Proceedings of IEEE INFOCOM, pages 1976–1986, San
Francisco, CA, Apr. 2003.

[12] Y. Huang and W. Lee. A cooperative intrusion detection
system for ad hoc networks. In Proceedings of the ACM
Workshop on Security of Ad Hoc and Sensor Networks
(SASN’03), Oct. 2003.

[13] Y. Huang and W. Lee. Attack analysis and detection for ad hoc
routing protocols. In Proceedings of the 7th International
Symposium on Recent Advances in Intrusion Detection
(RAID’04), pages 125–145, French Riviera, France, Sept. 2004.

[14] J.-P. Hubaux, L. Buttyán, and S. Capkun. The quest for
security in mobile ad hoc networks. In Proceeding of the ACM
Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc’01), Long Beach, CA, 2001.

[15] D. Liu and P. Ning. Multilevel µTESLA: Broadcast
authentication for distributed sensor networks. ACM
Transactions on Embedded Computing Systems (TECS),
3(4):800–836, Nov. 2004.

[16] S. Marti, T. J. Giuli, K. Lai, and M. Baker. Mitigating routing
misbehavior in mobile ad hoc networks. In Proceedings of the
6th Annual International Conference on Mobile Computing
and Networking (Mobicom’00), pages 255–265, 2000.

[17] C. E. Perkins, E. M. Belding-Royer, and I. Chakeres. Ad hoc on
demand distance vector (AODV) routing. Internet draft
draft-perkins-manet-aodvbis-00.txt, Internet Engineering Task
Force, Oct. 2003. (Work in Progress).

[18] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Network
support for IP traceback. ACM/IEEE Transactions on
Networking, 9(3):226–239, June 2001.

[19] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones,
F. Tchakountio, S. T. Kent, and W. T. Strayer. Hash-based IP
traceback. In Proceedings of the ACM Conference on
Communications Architectures, Protocols and
Applications(SIGCOMM’01), 2001.

[20] D. X. Song and A. Perrig. Advanced and authenticated
marking schemes for IP traceback. In Proceedings of the IEEE
INFOCOM, volume 2, 2001.

[21] F. Stajano and R. Anderson. The resurrecting duckling:
Security issues for ad-hoc wireless networks. Security
Protocols. 7th International Workshop Proceedings, Lecture
Notes in Computer Science, pages 172–194, 1999.

[22] N. H. Vaidya. Weak duplicate address detection in mobile ad
hoc networks. In Proceeding of the Third ACM Symposium on
Mobile Ad Hoc Networking and Computing (MobiHoc’02),
pages 206–216, Lausanne, Switzerland, June 2002.

[23] X. Wang, D. S. Reeves, S. F. Wu, and J. Yuill. Sleepy
watermark tracing: An active intrusion response framework. In
Proceedings of the 16th International Information Security
Conference (IFIP/Sec’01), June 2001.

[24] A. Yaar, A. Perrig, and D. X. Song. FIT: Fast internet
traceback. In Proceedings of IEEE INFOCOM, Miami, FL,
Mar. 2005.

