
Simulating Internet Worms ∗

George F. Riley1

Monirul I. Sharif2

Wenke Lee2

1Department of Electrical and Computer Engineering
Georgia Institute of Technology

Atlanta, GA 30332-0250
riley@ece.gatech.edu

2College of Computing
Georgia Institute of Technology

Atlanta, GA 30332-0280
msharif@cc.gatech.edu

Abstract

The accurate and efficient modeling of Internet worms
is a particularly challenging task for network simulation
tools. The atypical and aggressive behavior of these worms
can easily consume excessive resources, both processing
time and storage, within a typical simulator. In particular,
the selection of random IP addresses, and the sending of
packets to the selected hosts, even if they are non–existent
or not modeled in the simulation scenario, is challenging
for existing network simulation tools. Further, the computa-
tion of routing information for these randomly chosen tar-
get addresses defeats most caching or on–demand routing
methods, resulting in substantial overhead in the simula-
tor. We discuss the design of our Internet worm models in
theGeorgia Tech Network Simulator, and show how we ad-
dressed these issues. We present some results from our Inter-
net worm simulations that show the rate of infection spread
for a typical worm under a variety of conditions.

1. Introduction

The Internet has recently been the target of widespread
denial–of–service attacks in the form of Internet worms. A
typical worm will exploit some vulnerability in a host op-
erating system, usually an implementation bug or design
flaw, to cause the execution of a set of unauthorized soft-
ware codes on the victim systems. This malicious software,
or MalWare, can then inflict any manner of disruptive ac-
tions on the victim, ranging from nothing at all, to complete
destruction of all programs and data on the victim.

∗ This work is supported in part by NSF under contract number ANI-
0240477, and in part by DARPA under contract number N66002-00-
1-8934.

Further, the worm will attempt to replicate itself on other
end–hosts with similar vulnerabilities. It does this by send-
ing so–calledInfection Packetsto randomly chosen victims.
When an infection packet reaches a target system with the
same vulnerability, that system also becomes infected and
in turn attempts to infect even more victims. It is easy to
see that the total number of infected hosts over time (called
the Infection Rate) can exhibit exponential growth in cer-
tain conditions. Indeed, it is estimated that the recentSlam-
mer worm reached 90% of susceptible hosts in just a few
minutes[10]. It is important to note that, for the class of In-
ternet worms of interest here, no human intervention at all
is needed for the worm to spread. In contrast, methods that
use e–mail attachments or other file sharing methods, and
require a user actions to execute theMalWare can poten-
tially be thwarted simply by increased user awareness.

Given the potential for widespread disruption of the In-
ternet, the need for detailed modeling and analysis of the
behavior of these worms is obvious. Understanding how
to detect when a worm attack is underway would lead to
the development of filters or screening methods that could
lessen the effect of future worms. Detecting and reacting
to attempted infections, perhaps with active countermea-
sures, could slow down the infection rate sufficiently that
human intervention could effectively limit the damage. De-
tailed studies of the so–calledWhite Wormscould lead
to the development and deployment of active countermea-
sures that would eliminate or block the vulnerabilities be-
fore widespread infections occur.

We have developed worm models for theGeorgia Tech
Network Simulator(GTNetS) [12] that can be used to study
the behavior of these Internet worms under a variety of
conditions. We have included models for both theUDP
andTCPstyle infection methods, since there have been in-
stances of both methods in recent worms [16]. Our simula-
tion models include complete packet–level detail, both for
the worms and competing traffic on the modeled subnet-

works. By using this level of detail, we capture behavior
such as queue buildup and subsequent increase in round–
trip time due to the worm traffic itself, as well as the af-
fect of competing traffic on the infection packets. This level
of detail is necessary to capture a complete picture of the
worm’s behavior in the presence of other data flows and de-
fensive mechanisms.

The remainder of this paper is organized as follows. Sec-
tion 2 provides some information on worm modeling ef-
forts by others, both in packet–level simulations and with
analytical models. Section 3 describes in detail our worm
models and section 4 discuses the modifications needed in
the GTNetSsimulator to efficiently model the worms on
a large scale. Section 5 presents some preliminary results
from our simulation–based experiments of worm spreading.
Section 6 gives some concluding remarks and future direc-
tions for this research.

2. Related Work

In this section, we discuss some existing simulation
tools that have been used to model the behavior of Inter-
net worms. These existing tools can be loosely separated
into two categories, the analytical models and the packet–
level models.

A good analytical model of the infection rate of Internet
worms can be obtained by basing the analysis on epidemi-
ological models of disease spread[5]. Several of the charac-
teristics of the Internet worms have direct correspondence
to disease models, such as the infection probability, infec-
tion population, hosts interactions, and others. Indeed, us-
ing such an approach was discussed as early as 1991 [7].
Zou, Gong, and Towsley [17, 18] used this approach to ob-
tain predict the spread of worms under a variety of condi-
tions, and to measure the effectiveness of a proposed detec-
tion and defense mechanism.

Gao et. al [1] discuss another analytical approach called
the Analytical Active Worm Propagation(AAWP) model.
This model improves upon the epidemiological models in
a number of ways, including accounting for systems crash-
ing, systems being repaired and patched, and delay times
for infected hosts to actually begin spreading to others. Fur-
ther, Gao’s approach uses a discrete time model as opposed
to the continuous time models in the earlier approach.

The primary benefit of the analytical models is compu-
tational efficiency, in that the numerical solutions to these
models are largely independent of population size (topology
size), and can easily predict worm behavior on networks of
millions of elements. However, such models typically fail
to take into account the affect of queuing delay, packet loss,
and round–trip time delays in their predictions, nor can they
measure the affect of the worm traffic on other legitimate
traffic.

Packet–level detail models on the other hand, can be con-
structed to model in detail the effect of network character-
istics, such as queue length, queuing discipline, link band-
width, routing protocols, and the like. A significant work
in this area is by Liljenstam et. al [8]. In this work, the
SSFNet[4, 3] simulator was extended to include models
of the behavior of Internet worms, and used to measure the
worm’s affect on the network dynamics. Their approach was
a hybrid method, using complete packet level details for part
of the network, and a less accurate but more computation-
ally efficient model for other parts. They report good suc-
cess with this approach in predicting the overall spread of a
typical worm, and the affect of this spread on the network
as a whole.

In [15], Wagner discusses a detailed simulator for worm
propagation implemented in thePerl scripting language. In
this work, the affect of link bandwidth and propagation de-
lays are taken into account, but queuing, loss, and compet-
ing traffic are ignored. Further, theTCP–based worm mod-
els use a simplified behavior model forTCP, lacking slow
start and congestion window management features.

The venerablens2 [9] simulator has recently been ex-
tended to include some models for worm behavior. The
approached used inns2 is similar to that use bySSFNet,
namely the hybrid approach with detailed packet–level sim-
ulations for only a small part of the network. Further,ns2
has no built–in mechanisms for assigningIP addresses to
nodes, and thus the address scanning models for worms be-
come problematic.

To our knowledge, our approach is the only one to date
that allows full packet–level detail simulations of worm in-
fections for moderately large networks, including detailsof
TCP connection establishment and slow start, correct for-
warding of packets addressed to non–existent end–hosts,
and the effect of competing legitimate traffic on the spread
of the worm.

3. TheGTNetS Worm Models

In this section, we discuss in detail the design of our
worm models forGTNetS. To provide background for un-
derstanding our model design, give a brief overview about a
worm’s life cycle from its activation to its spreading to other
hosts. Even though attempts of classifying worms have been
made [16], it is still hard to find a way to make a com-
pletely generalized model that fits all of the classes. In this
work, we are only concerned with theTraditional Worms,
that do not require human intervention to spread. They in-
fect other systems by exploiting vulnerabilities in the soft-
ware. From a network point of view, these vulnerabilities
are mostly due to flaws inApplication-Levelfunctionality
that is typically built on eitherTCPor UDP transport level
protocols. The most common flaw in the application level

software is theBuffer Overflowbug [2], which can erro-
neously allow the system to execute code contained in spe-
cially built network packets. This code either contains the
complete program of the worm, or a portion of it that opens
a side channel to download in the rest of the code from
the infecting host. This phase can be called thePropaga-
tion Phaseof the worm. Subsequently, the worm code exe-
cutes instructions on the host in order to gain privileged or
root–level access to the compromised system. In thisActi-
vation Phase, the worm code can deploy any kind of pay-
load or proceed with the task of infecting other hosts. In
this Infection Phasethe worm instance selects target hosts
by generatingIP addresses of possible victims. The use of
the 32–bitIPv4 address space lets worm writers use sev-
eral target selection strategies (also called the worm’sTar-
get Vector), such as hit–list scanning, uniform random scan-
ning, local preference scanning etc. These scanning tech-
niques are also an important factor affecting a worm’s in-
fection rate.

While designing our worm model and worm simulation
environment, we aimed at fulfilling several objectives. The
first objective is that the worm model should have mini-
mal overhead in the network simulation environment. Sim-
ple and efficient worm models will enable large–scale sim-
ulation of worms by keeping memory and CPU overhead
to a minimum. Our target is to achieve million node simu-
lations of worm propagation. While theGTNetSsimulator
has demonstrated the capability of multi–million node sim-
ulations [6], these demonstrations used idealized scenarios,
and thus are not directly applicable to worm simulations.
However, we have achieved more than 50,000 nodes in a
worm simulation, and have not yet exploited the distributed
simulation features ofGTNetS, and thus are confident of
meeting our longer–term goals.

The second objective is that the model should capture
the important parameters that affect propagation and infec-
tion rate with packet level details. A third objective is that
it should be flexible enough for supporting a wide range of
worm activities and classes.

The worm models inGTNetSare designed around the be-
havior of the real worm code and underlying network pro-
tocols. Therefore the model allows parameters to be set that
represent the worm action in its different phases. For the
complete worm simulation, several other parameters includ-
ing the network topology, host vulnerability probability,and
theIP Addressdistribution must be specified using inherent
GTNetSfeatures. The parameters describing the worms are:

• Transport Protocol - The underlying transport proto-
col creates a distinct difference in propagation from a
network’s point of view.UDP based worms such as
theSlammer[10] have small infection packets that are
generally transmitted as fast as possible, limited only
by the bandwidth of the outgoing link. These pack-

ets might get dropped, but the worm itself does not
wait for any acknowledgments from the target. The
propagation speed and therefore the overall scan rate
of such a worm depends on the available bandwidth
of the network. On the other hand, worms exploit-
ing TCP require a connection to be established be-
fore the payload packets are sent, and therefore the
propagation speed depends on the average round trip
time (RTT) between hosts. These classes of worms are
calledRTT-limited. Such worms improve propagation
speed by using several simultaneousTCPconnections,
typically by writing the worm as a multi-threaded ap-
plication. Our model supports both of these types of
worm classes. We should also add that the model is
flexible enough to be extended to incorporate propaga-
tion methods that use both methods.

• Infection Length - This parameter specifies the size of
exploitation data that is sent to a victim host to infect
it. For example, smaller worms might need just a sin-
gle UDP datagram orTCP segment, and presumably
little or no IP fragmentation. ForTCP based worms
moreTCP segments might mean longer delay due to
several round trip times being required to transfer the
worm payload. Large infection payloads can also cause
more aggregate data being transferred through the net-
work, leading to higher probability of saturating the
links quickly or dropped packets due to queue over-
flows.

• Infection Port - The transport layer port that is used
to send infection packets to can be specified. When a
worm instance starts sending infection packets to other
hosts, it is addressed to this specified port on the tar-
get host. This feature allows simulations with compet-
ing background traffic to hosts on other ports, or the
same port.

• Target Vector and Scanning Pattern - The worm model
in GTNetSallows flexible selection of scanning pat-
terns. This is implemented as an extensible class that
generatesIPv4 addresses for a particular worm in-
stance on a host. This behavior of this class has sev-
eral variations, as follows:

– Uniformly Random Scanning - AnyIP address
is generated in a specified address range with the
same probability.

– Local Preference Scanning - A victimIP on the
same subnetwork as the presently infected host is
chosen with higher probability than otherIP ad-
dresses.

– Sequential Scanning -IP addresses are chosen
sequentially within a specified range.

Since our implementation is an object–oriented ap-
proach, the target vector generation class can easily be

overridden by the simulation user to create any scan-
ning method desired.

• Scanrate - This is forUDP based worms only, since
the rate at which infection packets are generated by
TCP worms is a function of the number of simulta-
neousTCPconnections and other external factors. For
UDP based worms, the worm transmits infection pack-
ets at the rate specified by this parameter.

• Connections - This parameter is used to model the
number of simultaneous connections that are used by
TCPbased worms. TheCode Red IIworm [11] used
300 threads to connect to different target hosts at the
same time, allowing a maximum of 300 sustainable
TCP connections. Our model allows worms like this
to be represented in the simulation.

Another important factor in studying worm propagation
is the network topology used to carry worm and background
traffic. GTNetSoffers the flexibility of setting up any arbi-
trary topology, by connecting together any of the many pre–
defined topology objects. In the next section, we describe
our additions toGTNetSthat allow creation of reasonable
topology models, in a scalable and efficient manner. Fur-
ther, we describe methods to alleviate potentially excessive
overhead in the simulator due to the random target selec-
tion methods used by worms.

4. Enhancements toGTNetS

The worm behavior itself leads to several potential inef-
ficiencies in a simulation environment, which must be ad-
dressed to achieve scalable and efficient simulations. We
discuss these issues and our solutions in theGTNetSsim-
ulation environment.

From an efficiency standpoint, a primary concern in net-
work simulation environments is the computation and stor-
age of packet routing information. A common approach is
the a priori computation ofrouting tablesfor every node
in this simulated topology. This method is easy to under-
stand, easy to implement, and is a reasonable approxima-
tion of correct packet routing in the network. However, as
the size of the simulated topology increases, the CPU and
memory demand on the simulator become unmanageable.
GTNetSsolves this problem by using the well–knownNIx–
Vector [13, 14] routing method. With this method, routes
are computed only as needed, and are stored in thepack-
ets, rather than in routing tables. The route computation
uses a breadth first search (BFS) algorithm on the topology
graph to find the shortest path from a source to a destina-
tion. TheNIx–Vectoris an efficient method for storing rout-
ing information in packets, and can represent most routes
in 32 bits or less. To avoid excessive CPU time for comput-
ing the routes, theNIx–Vectorsare cached at the source node

and re–used as needed. TheNIx–Vectorrouting method has
been shown to be a reasonably efficient method for packet
routing in simulated networks [13].

However, the generation of infection packets to ran-
domly generated targets circumvents many of the benefits of
NIx–Vectorrouting. TheBFSalgorithm is executed repeat-
edly, with little likelihood of a cache hit on a previously cal-
culated route. Further, finding routes to non–existent hosts
causes theBFSalgorithm to exhaustively search all paths
before determining that no route exists. Finally, worm pack-
etsmustbe routed in a reasonable way, even if the target
does not exist (implying that noNIx–Vectorcan be found).
We address these issues in ourGTNetSworm models by
several enhancements in the route computations, described
below.

4.1. Routing Proxies

The notion ofRouting Proxywas introduced inGTNetS
to reduce the cost of searching for routes to nodes (either
existing or non-existent), and to enable realistic forwarding
of packets that are destined to non-existant hosts. ARout-
ing Proxycan be expressed by a pair(A, S) whereA is the
base address of the range andS is the network size. For
example(102.10.0.0, /16) represents a/16 network start-
ing at the address102.10.0.0. Any output link interfaceI
at a nodeN in the network topology may be assigned one
or moreRouting Proxiesdenoted asPi having the follow-
ing properties:

• The IP addresses of any nodeM that is reachable via
N through interfaceI mustbe contained in any of the
address rangesPi.

• The IP addresses of any nodeM that cannot be
reached viaN through interfaceI must notbe con-
tained in any of the address rangesPi.

The above insures that when defined, theRouting Prox-
ies should reveal all possible addresses reachable by that
node through that interface. It should be noted though, that
for nodes that are normally in the backbone or have a large
list of reachable address ranges, theRouting Proxywould
likely be omitted, since in all likelihood there would be
many sets ofIP address ranges reachable through that node.
In our experiments, we defined the proxies only at the gate-
way nodes to sub–networks.

When the route computation algorithm encounters a
node with aRouting Proxydefined that encompasses the tar-
getIP address, the algorithm halts and returns aNIx–Vector
to the node containing the routing proxy. When the corre-
sponding packet later arrives at the node with the routing
proxy, the appropriate output interface can easily be de-
termined by searching the proxy information. Thus, even

packets addressed to non–existent nodes will be prop-
erly routed to the ingress gateway on the proper sub-
network, just as similar packets would be in the Inter-
net.

4.2. BFS Pruning

As mentioned earlier, theBFS route computation algo-
rithm can be a source of significant CPU overhead in the
simulator. OurRouting Proxiesfeature described above al-
lows for an improvement in the standardBFSalgorithm that
substantially reduces the CPU overhead for route computa-
tions. Our modifiedBFSalgorithm incorporates the infor-
mation found in theRouting Proxiesto reduce the search-
ing cost.

We start by further restricting the definition and meaning
of a Routing Proxyas follows:

• With Routing Proxyentries for nodeN and interface
I defined,only those nodes withIP addresses encom-
passed by any one of thoseRouting Proxyentries is
reachable via that interface.

The importance of the third restriction is such that the
BFS algorithm can prune large portions of the topology
graph when computing a shortest path route. Since the
proxy specifies that only the specified range is reachable
via a specific interface, all neighbors of that interface can
be pruned if the destination address is not in the specified
range.

A portion of the modifiedBFSalgorithm is given below.

u = Q.GetFront()
if (u.HasRoutingProxyInfo() &&

!u.CanRoute(sourceIP) &&
!u.CanRoute(targetIP))
Prune(u)

else{
Continue processing...

}

4.3. NIx–Vector Aggregation

The use of theRouting Proxiesleads to another improve-
ment in the computation and storage of routes, namely the
use ofNIx–Vectoraggregation. Recall that theNIx–Vector
calculation will stop when a node is found that has aRouting
Proxydefined encompassing the targetIP address. The cal-
culatedNIx–Vectoris used to route the packet to the proxy
node, which in turn routes the packet to the final destina-
tion. However, in this case the calculatedNIx–Vectoris valid
not only for the original targetIP address, but for allIP ad-
dressesin the proxy range. In other words, if aNIx–Vector
to a /16 proxy address is calculated, that sameNIx–Vector
is correct for216 targets encompassed by that proxy. Thus,

when future packets are addressed to any target in the same
/16 range, the sameNIx–Vectorshould be used.

The NIx–Vectoraggregation feature stores the cached
NIx–Vectorsat each source node along with a specification
of the IP address range for which thisNIx–Vectoris valid.
Subsequent cache lookups for a targetIP address in that
range return the sameNIx–Vector. This adds a small extra
cost inNIx–Vectorcache lookups, but reduces the overall
number of route computations needed in the worm simula-
tion.1

4.4. Random Tree

Another important issue when studying the infection
rate of Internet worms is a reasonable topology graph, par-
ticularly one that has some mix ofIP addresses that are
valid and modeled, as well as addresses that represent non–
existent hosts. In other words, for a given subnetwork with
a /16 address range assigned (for example), it is rarely the
case that all216 IP addresses in that range actually are as-
signed to a working host. It is likely the case however, that
all packets addressed to any address in that range from else-
where in the network will be delivered to the subnetwork (at
a minimum to the ingress gateway), and then later dropped
at some point within the subnetwork. The correct and effi-
cient modeling of theseholesin the IP address space is an
important criterion for simulation–based worm studies.

In GTNetS, we introduced a topology model object for
a Random Tree. A random tree is defined by it’s depth and
fanout values, as are normal tree objects, but extended to in-
clude achild probability factor. As the tree topology is be-
ing constructed, child nodes are randomly pruned based on
the child probability factor. The result is a topology object
with a sparse IPaddress space, with some fraction of the
possibleIP addresses unassigned. To illustrate this point,
we give an example.

Let f be the fanout,d be the depth,q be the address uti-
lization ratio andp be the probability of generating a child.
In the random tree, any non–leaf node will have an expected
number offp children. So, the expected number of leaf
nodes of the entire tree is(fp)d−1.

Therefore, for a given tree withf andd, we can calculate
the necessaryp to get a ratioq in the following way.

(fp)d−1

fd−1
= q

(d − 1) ln p = ln q

p = e
ln q

d−1 (1)

1 Presently, the implementation ofNIx–Vectoraggregation inGTNetSis
work–in–progress and is not complete.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 2 4 6 8 10 12 14 16

In
fe

ct
ed

 h
os

ts

Time

Payload length
1 KB
2 KB
5 KB

10 KB

Figure 1. Effect of Payload size for TCP

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1 2 3 4 5 6 7 8 9 10

In
fe

ct
ed

 h
os

ts

Time

Differing number of TCP connections
1 thread

2 threads
3 threads
4 threads

Figure 2. Effect of Parallel Connections

So equation 1 shows that the value ofp does not depend
on the fanout of the tree. If it is required to generate a ran-
dom tree having 25% of the addresses used and a depth of
5, we setq = 0.25 andd = 5 in equation 1 and get the re-
sultant value ofp = 0.707.

5. Experimental Results

In this section, we give some preliminary results for
worm infection rates for bothUDP andTCPworms. These
results are intended to illustrate the capabilities of ourGT-
NetSworm models, and not intended to show a comprehen-
sive study of worm infection rates.

The results in figure 1 show the effect of theTCP pay-
load size on on the infection rate. As expected, worms with
larger payloads will spread less quickly, due to more round
trip times elapsed during the payload forwarding. Results in
figure 2 show the effect of the number of simultaneousTCP
connections on the overall worm propagation. Again, as ex-
pected, the worms with fewer connections are less effective.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

In
fe

ct
ed

 h
os

ts

Time

legend - downstream, backbone
100Mbps, 100Mbps
10Mbps, 100Mbps
10Mbps, 10Mbps
1Mbps, 10Mbps

1Mbps, 1Mbps

Figure 3. Effect of Bandwidth of links

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1 2 3 4 5 6 7 8 9 10

In
fe

ct
ed

 h
os

ts

Time

scanrate
5

10
20

Figure 4. Effect of Scanrate for UDP worms

The results in figure 3 demonstrate the effect of link
bandwidth onUDP worm infection rates.UDP worms are
typically limited by the first–hop link bandwidth, and the re-
sults show this is the case. Slower links results in slower in-
fection rates. Figure 4 shows thatUDP worms that send in-
fection packets at a higher rate (within the constraint of the
first–hop link bandwidth) will spread faster than those with
slower scan rates. Finally, figure 5 shows thatUDP worms
with larger payloads will propagate more slowly than those
with small payloads, although this is not as pronounced as
theTCPworms with larger payloads. This is due to the fact
thatUDP worms do not wait of acknowledgments and thus
are largely independent of round trip times.

6. Summary

We have introduced our worm models for theGeorgia
Tech Network Simulator, and discussed a number of effi-
ciency issues that must be addressed in any simulation en-
vironment designed to perform packet–level simulations of
Internet worms. A number of novel features for our simula-

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

In
fe

ct
ed

 h
os

ts

Time

payload length
500 bytes

1 KB
2 KB
5 KB

10 KB
20 KB
50 KB

Figure 5. Effect of Payload size for UDP

tor have been designed and developed, and have lead to the
capability to perform simulation studies of Internet worms
in realistic environments.

We have not yet exploited the parallel and distributed
simulation features ofGTNetSfor this research, but will do
so in the near future. Our current success in modeling mod-
erately large topologies with the sequential version ofGT-
NetS, coupled with earlier success modeling extremely large
topologies withGTNetS, leads us to be optimistic about fu-
ture Internet scale worm models and simulation studies.

References

[1] Z. Chen, L. Gao, and K. Kwiat. Modeling the spread of
active worms. InProceedings of INFOCOM ’2003. IEEE
Computer Society, 2003.

[2] C. Cowan, F. Wagle, C. Pu, S. Beattie, and J. Walpole. Buffer
overflows: attacks and defenses for the vulnerability of the
decade. InDARPA Information Survivability Conference and
Exposition 2000, Jan 2000.

[3] J. Cowie, H. Liu, J. Liu, D. Nicol, and A. Ogielski. To-
wards realistic million-node internet simulations. InInter-
national Conference on Parallel and Distributed Processing
Techniques and Applications, June 1999.

[4] J. H. Cowie, D. M. Nicol, and A. T. Ogielski. Modeling the
global internet.Computing in Science and Engineering, Jan-
uary 1999.

[5] D. J. Daley and J. Gani.Epidemic Modeling: An Introduc-
tion. Cambridge University Press, 1999.

[6] R. Fujimoto, G. Riley, K. Perumalla, A. Park, H. Wu, and
M. Ammar. Large-scale network simulation: How big?
how fast? InProceedings of Eleventh International Sym-
posium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems (MASCOTS’03), Oct 2003.

[7] J. O. Kephart and S. R. White. Directed graph epidemiolog-
ical models of computer viruses. InProceedings of the IEEE
Symposium on Security and Privacy, 1991.

[8] M. Liljenstam, D. Nicol, V. Berk, and R. Gray. Simulating
realistic network worm traffic for worm warning system de-

sign and testing. InProceedings of the 2003 ACM workshop
on rapid malcode, Oct 2003.

[9] S. McCanne and S. Floyd. The LBNL network simu-
lator. Software on-line: http://www.isi.edu/nsnam, 1997.
Lawrence Berkeley Laboratory.

[10] D. Moore, V. Paxon, S. Savage, C. Shannon, S. Staniford,
and N. Weaver. Inside the slammer worm.IEEE Security
and Privacy Magazine, 1(4), July 2003.

[11] D. Moore, C. Shannon, and K. Claffy. Code–Red: a case
study on the spread and victims of an Internet worm. InPro-
ceedings of the second ACM workshop on Internet Measure-
ment, Nov 2002.

[12] G. F. Riley. The Georgia Tech Network Simulator. InPro-
ceedings of the ACM SIGCOMM workshop on Models, meth-
ods and tools for reproducible network research, pages 5–12.
ACM Press, 2003.

[13] G. F. Riley, M. H. Ammar, and R. M. Fujimoto. Stateless
routing in network simulations. InProceedings of the Eighth
International Symposium on Modeling, Analysis and Simu-
lation of Computer and Telecommunication Systems, August
2000.

[14] G. F. Riley, M. H. Ammar, and E. W. Zegura. Efficient rout-
ing using nix-vectors. In2001 IEEE Workshop on High Per-
formance Switching and Routing, May 2001.

[15] A. Wagner, T. Dubendorfer, B. Plattner, and R. Hiestand. Ex-
periences with worm propagation simulations. InProceed-
ings of the 2003 ACM workshop on rapid malcode, Oct 2003.

[16] N. Weaver, V. Paxon, S. Staniford, and R. Cunningham. In-
ternet worms: past, present and future: A taxonomy of com-
puter worms. InProceedings of the 2003 ACM workshop on
rapid malcode, Oct 2003.

[17] C. Zou, L. Gao, W. Gong, and D. Towsley. Information war-
fare: Monitoring and early warning for Internet worms. In
Proceedings of the 10th ACM conference on Computer and
communication security, Oct 2003.

[18] C. Zou, W. Gong, and D. Towsley. Worm propagation mod-
eling and analysis under dynamic quarantine defense. InPro-
ceedings of the 2003 ACM workshop on rapid malcode, Oct
2003.

