Simulating Internet Worms *

George F. Riley
Monirul I. Sharif
Wenke Lee

'Department of Electrical and Computer Engineering *College of Computing
Georgia Institute of Technology Georgia Institute of Technology
Atlanta, GA 30332-0250 Atlanta, GA 30332-0280
riley@ece.gatech.edu msharif@cc.gatech.edu

Abstract Further, the worm will attempt to replicate itself on other
end—hosts with similar vulnerabilities. It does this byden
The accurate and efficient modeling of Internet worms ing so—callednfection Packetso randomly chosen victims.
is a particularly challenging task for network simulation When an infection packet reaches a target system with the
tools. The atypical and aggressive behavior of these wormsSame vulnerability, that system also becomes infected and
can easily consume excessive resources, both processintj} {Urn attempts to infect even more victims. It is easy to
time and storage, within a typical simulator. In particular S€€ that the total number of infected hosts over time (called
the selection of random IP addresses, and the sending ofth€ Infection Rat can exhibit exponential growth in cer-
packets to the selected hosts, even if they are non—exister{@in conditions. Indeed, it is estimated that the re&tam-
or not modeled in the simulation scenario, is challenging Merworm reached 90% of susceptible hosts in just a few
for existing network simulation tools. Further, the comgeut ~ Minutes[10]. Itis important to note that, for the class of In
tion of routing information for these randomly chosen tar- ternet worms of interest here, no human intervention at all
get addresses defeats most caching or on-demand routindS Needed for the worm to spread. In contrast, methods that
methods, resulting in substantial overhead in the simula- US€ €-mail attachments or other file sharing methods, and
tor. We discuss the design of our Internet worm models in 'equire a user actions to execute MalWare can poten-
theGeorgia Tech Network Simulatgand show how we ad- tially be thwarted simply by increased user awareness.
dressed these issues. We present some results from our Inter - Given the potential for widespread disruption of the In-
net worm simulations that show the rate of infection spread ternet, the need for detailed modeling and analysis of the
for a typical worm under a variety of conditions. behavior of these worms is obvious. Understanding how
to detect when a worm attack is underway would lead to
the development of filters or screening methods that could
lessen the effect of future worms. Detecting and reacting
1. Introduction to attempted infections, perhaps with active countermea-
sures, could slow down the infection rate sufficiently that
The Internet has recently been the target of widespreadhuman intervention could effectively limit the damage. De-
denial-of—service attacks in the form of Internet worms. A tailed studies of the so—called/hite Wormscould lead
typical worm will exploit some vulnerability in a host op- to the development and deployment of active countermea-
erating system, usua”y an imp|ementation bug or designsures that would eliminate or block the vulnerabilities be-
flaw, to cause the execution of a set of unauthorized soft-fore widespread infections occur.
ware codes on the victim systems. This malicious software, e have developed worm models for tBeorgia Tech

or MalWare can then inflict any manner of disruptive ac- Network Simulato(GTNet$ [12] that can be used to study
tions on the victim, ranging from nothing at all, to complete the behavior of these Internet worms under a variety of
destruction of all programs and data on the victim. conditions. We have included models for both tHBP
andTCP style infection methods, since there have been in-
« This work is supported in part by NSF under contract numbet-aN ~ Stances of both methods in recent worms [16]. Our simula-
0240477, and in part by DARPA under contract number N66aB2-0 tion models include complete packet-level detail, both for
1-8934. the worms and competing traffic on the modeled subnet-

works. By using this level of detail, we capture behavior = Packet-level detail models on the other hand, can be con-
such as queue buildup and subsequent increase in roundstructed to model in detail the effect of network character-
trip time due to the worm traffic itself, as well as the af- istics, such as queue length, queuing discipline, link band
fect of competing traffic on the infection packets. This leve width, routing protocols, and the like. A significant work
of detail is necessary to capture a complete picture of thein this area is by Liljenstam et. al [8]. In this work, the
worm'’s behavior in the presence of other data flows and de-SSFNet4, 3] simulator was extended to include models
fensive mechanisms. of the behavior of Internet worms, and used to measure the
The remainder of this paper is organized as follows. Sec-worm’s affect on the network dynamics. Their approach was
tion 2 provides some information on worm modeling ef- ahybrid method, using complete packet level details far par
forts by others, both in packet—level simulations and with of the network, and a less accurate but more computation-
analytical models. Section 3 describes in detail our worm ally efficient model for other parts. They report good suc-
models and section 4 discuses the modifications needed ircess with this approach in predicting the overall spread of a
the GTNetSsimulator to efficiently model the worms on typical worm, and the affect of this spread on the network
a large scale. Section 5 presents some preliminary resultsis a whole.
from our simulation—based experiments of worm spreading. In [15], Wagner discusses a detailed simulator for worm
Section 6 gives some concluding remarks and future direc-propagation implemented in thRerl scripting language. In

tions for this research. this work, the affect of link bandwidth and propagation de-
lays are taken into account, but queuing, loss, and compet-
2. Related Work ing traffic are ignored. Further, thieCP-based worm mod-

els use a simplified behavior model fo€P, lacking slow

In this section, we discuss some existing simulation startand congestion window management features.

tools that have been used to model the behavior of Inter- 11€ ven_erablensz [9] simulator has recently begn ex
net worms. These existing tools can be loosely separateotended to include Some ”,‘O‘?'e's for worm behavior. The
into two categories, the analytical models and the packet—2PProached used ins2is similar to that use bysSFNet
level models. namely the hybrid approach with detailed packet—level sim-

A good analytical model of the infection rate of Internet ulations fo_r o_nly a small_ part of the UePWO”‘- Furthes?
worms can be obtained by basing the analysis on epidemi—has no built-in mechanisms for assigniiiyaddresses to
ological models of disease spread[5]. Several of the charac hodes, and thus_the address scanning models for worms be-
teristics of the Internet worms have direct correspondenceCome problematic.

to disease models, such as the infection probability, infec To our knowledge, our approa_lch_ IS the_ only one to ‘?'ate
tion population, hosts interactions, and others. Indesd, u that allows full packet—level detail simulations of worm in

ing such an approach was discussed as early as 1991 [7 f_ectlons for mloderately.large networks, including detafls
CP connection establishment and slow start, correct for-

Zou, Gong, and Towsley [17, 18] used this approach to ob- , ,
tain predict the spread of worms under a variety of condi- Warding of packets addressed to non—existent end-hosts,

tions, and to measure the effectiveness of a proposed detec@nd the effect of competing legitimate traffic on the spread
tion and defense mechanism. of the worm.
Gao et. al [1] discuss another analytical approach called
the Analytical Active Worm PropagatiotAAWP model. 3. The GTNetS Worm Models
This model improves upon the epidemiological models in
a number of ways, including accounting for systems crash- In this section, we discuss in detail the design of our
ing, systems being repaired and patched, and delay timesvorm models fortGTNetS To provide background for un-
for infected hosts to actually begin spreading to others. Fu derstanding our model design, give a brief overview about a
ther, Gao’s approach uses a discrete time model as opposedorm’s life cycle from its activation to its spreading to eth
to the continuous time models in the earlier approach. hosts. Even though attempts of classifying worms have been
The primary benefit of the analytical models is compu- made [16], it is still hard to find a way to make a com-
tational efficiency, in that the numerical solutions to thes pletely generalized model that fits all of the classes. s thi
models are largely independent of population size (topolog work, we are only concerned with thigaditional Worms
size), and can easily predict worm behavior on networks of that do not require human intervention to spread. They in-
millions of elements. However, such models typically fail fect other systems by exploiting vulnerabilities in thetsof
to take into account the affect of queuing delay, packet loss ware. From a network point of view, these vulnerabilities
and round-trip time delays in their predictions, nor catythe are mostly due to flaws idpplication-Levefunctionality
measure the affect of the worm traffic on other legitimate that is typically built on eithem CP or UDP transport level
traffic. protocols. The most common flaw in the application level

software is theBuffer Overflowbug [2], which can erro-
neously allow the system to execute code contained in spe-
cially built network packets. This code either contains the
complete program of the worm, or a portion of it that opens
a side channel to download in the rest of the code from
the infecting host. This phase can be called Eiepaga-
tion Phaseof the worm. Subsequently, the worm code exe-
cutes instructions on the host in order to gain privileged or
root—level access to the compromised system. InAlis
vation Phasethe worm code can deploy any kind of pay-
load or proceed with the task of infecting other hosts. In
this Infection Phasahe worm instance selects target hosts
by generatingP addresses of possible victims. The use of
the 32-bitlIPv4 address space lets worm writers use sev-
eral target selection strategies (also called the woflars

get Vectoy, such as hit-list scanning, uniform random scan-

ning, local preference scanning etc. These scanning tech-

nigues are also an important factor affecting a worm'’s in-
fection rate.

While designing our worm model and worm simulation
environment, we aimed at fulfilling several objectives. The
first objective is that the worm model should have mini-
mal overhead in the network simulation environment. Sim-
ple and efficient worm models will enable large—scale sim-
ulation of worms by keeping memory and CPU overhead
to a minimum. Our target is to achieve million node simu-
lations of worm propagation. While th@TNetSsimulator
has demonstrated the capability of multi—-million node sim-
ulations [6], these demonstrations used idealized saag)ari
and thus are not directly applicable to worm simulations.
However, we have achieved more than 50,000 nodes in a
worm simulation, and have not yet exploited the distributed
simulation features oGTNetS and thus are confident of
meeting our longer—term goals.

The second objective is that the model should capture
the important parameters that affect propagation and-nfec
tion rate with packet level details. A third objective is tha
it should be flexible enough for supporting a wide range of
worm activities and classes.

The worm models its TNetSare designed around the be-
havior of the real worm code and underlying network pro-
tocols. Therefore the model allows parameters to be set that
represent the worm action in its different phases. For the
complete worm simulation, several other parameters includ
ing the network topology, host vulnerability probabiliéyd
thelP Addresdistribution must be specified using inherent
GTNetSeatures. The parameters describing the worms are:

e Transport Protocol - The underlying transport proto-
col creates a distinct difference in propagation from a
network’s point of view.UDP based worms such as
the Slammef10] have small infection packets that are
generally transmitted as fast as possible, limited only
by the bandwidth of the outgoing link. These pack-

ets might get dropped, but the worm itself does not
wait for any acknowledgments from the target. The
propagation speed and therefore the overall scan rate
of such a worm depends on the available bandwidth
of the network. On the other hand, worms exploit-
ing TCP require a connection to be established be-
fore the payload packets are sent, and therefore the
propagation speed depends on the average round trip
time (RTT) between hosts. These classes of worms are
calledRTT-limited Such worms improve propagation
speed by using several simultaned@P connections,
typically by writing the worm as a multi-threaded ap-
plication. Our model supports both of these types of
worm classes. We should also add that the model is
flexible enough to be extended to incorporate propaga-
tion methods that use both methods.

Infection Length - This parameter specifies the size of
exploitation data that is sent to a victim host to infect
it. For example, smaller worms might need just a sin-
gle UDP datagram offCP segment, and presumably
little or no IP fragmentation. FoTCP based worms
more TCP segments might mean longer delay due to
several round trip times being required to transfer the
worm payload. Large infection payloads can also cause
more aggregate data being transferred through the net-
work, leading to higher probability of saturating the
links quickly or dropped packets due to queue over-
flows.

e Infection Port - The transport layer port that is used

to send infection packets to can be specified. When a
worm instance starts sending infection packets to other
hosts, it is addressed to this specified port on the tar-
get host. This feature allows simulations with compet-
ing background traffic to hosts on other ports, or the
same port.

Target Vector and Scanning Pattern - The worm model
in GTNetSallows flexible selection of scanning pat-
terns. This is implemented as an extensible class that
generatedPv4 addresses for a particular worm in-
stance on a host. This behavior of this class has sev-
eral variations, as follows:

— Uniformly Random Scanning - AnjP address
is generated in a specified address range with the
same probability.

— Local Preference Scanning - A victit® on the
same subnetwork as the presently infected host is
chosen with higher probability than othiét ad-
dresses.

— Sequential Scanning IP addresses are chosen
sequentially within a specified range.
Since our implementation is an object—oriented ap-
proach, the target vector generation class can easily be

overridden by the simulation user to create any scan-and re—used as needed. TMig—Vectorouting method has
ning method desired. been shown to be a reasonably efficient method for packet
routing in simulated networks [13].

However, the generation of infection packets to ran-
domly generated targets circumvents many of the benefits of

neousTCP connections and other external factors. For NIx-Vectorouting. TheBFSalgorithm is executed repeat-

UDP based worms, the worm transmits infection pack- edly, with little likelihood of a cache hit on a previouslylca
ets at the rate speéified by this parameter. culated route. Further, finding routes to non—existentshost

)]] causes th&FSalgorithm to exhaustively search all paths
o Connections - This parameter is used to model the pefore determining that no route exists. Finally, worm pack
number of simultaneous connections that are used byets mustbe routed in a reasonable way, even if the target
TCPbased worms. Th€ode Red Iworm [11]used gges not exist (implying that nix-Vectorcan be found).
300 threads to connect to different target hosts at theyye address these issues in @GifNetSworm models by

same time, allowing a maximum of 300 sustainable geyeral enhancements in the route computations, described
TCP connections. Our model allows worms like this pejow.

to be represented in the simulation.

e Scanrate - This is fotJDP based worms only, since
the rate at which infection packets are generated by
TCP worms is a function of the number of simulta-

Another important factor in studying worm propagation 4.1. Routing Proxies
is the network topology used to carry worm and background
traffic. GTNetSoffers the flexibility of setting up any arbi- The notion ofRouting Proxywas introduced irGTNetS
trary topology, by connecting together any of the many pre—to reduce the cost of searching for routes to nodes (either
defined topology objects. In the next section, we describeexisting or non-existent), and to enable realistic foniregd
our additions toGTNetSthat allow creation of reasonable of packets that are destined to non-existant hostRoAt-
topology models, in a scalable and efficient manner. Fur-ing Proxycan be expressed by a péit, S) whereA is the
ther, we describe methods to alleviate potentially exeessi base address of the range afids the network size. For
overhead in the simulator due to the random target selec-example(102.10.0.0, /16) represents &16 network start-

tion methods used by worms. ing at the addres$02.10.0.0. Any output link interfacel
at a nodeN in the network topology may be assigned one
4. Enhancements taGTNetS or moreRouting Proxieslenoted as’; having the follow-

ing properties:
The worm behavior itself leads to several potential inef- .)
ficiencies in a simulation environment, which must be ad- ® ThelP addresses of any nodd that is reachable via
dressed to achieve scalable and efficient simulations. We & through interfacd mustbe contained in any of the

discuss these issues and our solutions inGA&letSsim- address ranges,.

ulation environment. e The IP addresses of any nod&/ that cannot be
From an efficiency standpoint, a primary concern in net- reached viaV through interface/ must notbe con-

work simulation environments is the computation and stor- tained in any of the address ranges

age of packet routing information. A common approach is

the a priori computation ofouting tablesfor every node The above insures that when defined, Rmuting Prox-

in this simulated topology. This method is easy to under- ies should reveal all possible addresses reachable by that
stand, easy to implement, and is a reasonable approximanode through that interface. It should be noted though, that
tion of correct packet routing in the network. However, as for nodes that are normally in the backbone or have a large
the size of the simulated topology increases, the CPU andist of reachable address ranges, Reuting Proxywould
memory demand on the simulator become unmanageablelikely be omitted, since in all likelihood there would be

GTNetSsolves this problem by using the well-knonix— many sets ofP address ranges reachable through that node.
Vector[13, 14] routing method. With this method, routes In our experiments, we defined the proxies only at the gate-
are computed only as needed, and are stored imp#uok- way nodes to sub—networks.

ets rather than in routing tables. The route computation ~ When the route computation algorithm encounters a
uses a breadth first seardHS algorithm on the topology = node with aRouting Proxydefined that encompasses the tar-
graph to find the shortest path from a source to a destina-getlP address, the algorithm halts and returméla—\Vector

tion. TheNIx—Vectoris an efficient method for storing rout- to the node containing the routing proxy. When the corre-
ing information in packets, and can represent most routessponding packet later arrives at the node with the routing
in 32 bits or less. To avoid excessive CPU time for comput- proxy, the appropriate output interface can easily be de-
ing the routes, thBlIx—\Vectorsare cached at the source node termined by searching the proxy information. Thus, even

packets addressed to non—existent nodes will be prop-when future packets are addressed to any target in the same
erly routed to the ingress gateway on the proper sub-/16 range, the samélx—Vectorshould be used.

network, just as similar packets would be in the Inter-
net.

4.2. BFS Pruning

As mentioned earlier, thBFSroute computation algo-

The NIx—Vectoraggregation feature stores the cached
NIx—Vectorsat each source node along with a specification
of the IP address range for which thi$lx—\Vectoris valid.
Subsequent cache lookups for a tarfetaddress in that
range return the sanmélx—\Vector This adds a small extra
cost inNIx—Vectorcache lookups, but reduces the overall

rithm can be a source of significant CPU overhead in the number of route computations needed in the worm simula-

simulator. OurRouting Proxiedeature described above al-
lows for an improvementin the standd@&Salgorithm that

substantially reduces the CPU overhead for route computa-

tions. Our modifiedBFSalgorithm incorporates the infor-
mation found in theRouting Proxiedo reduce the search-
ing cost.

We start by further restricting the definition and meaning

of aRouting Proxyas follows:

e With Routing Proxyentries for nodeV and interface
I defined,only those nodes withP addresses encom-
passed by any one of tho&outing Proxyentries is
reachable via that interface.

tion.!

4.4, Random Tree

Another important issue when studying the infection
rate of Internet worms is a reasonable topology graph, par-
ticularly one that has some mix ¢P addresses that are
valid and modeled, as well as addresses that represent non—
existent hosts. In other words, for a given subnetwork with
a /16 address range assigned (for example), it is rarely the
case that al2'® IP addresses in that range actually are as-
signed to a working host. It is likely the case however, that

The importance of the third restriction is such that the all packets addressed to any address in that range from else-

BFS algorithm can prune large portions of the topology

where in the network will be delivered to the subnetwork (at

graph when computing a shortest path route. Since the® Minimum to the ingress gateway), and then later dropped
proxy specifies that only the specified range is reachable@t Some point within the subnetwork. The correct and effi-
via a specific interface, all neighbors of that interface can ciént modeling of thestolesin the P address space is an
be pruned if the destination address is not in the specifiedimportant criterion for simulation-based worm studies.

range.
A portion of the modifiedFSalgorithm is given below.

u = Q.GetFront()

if (u.HasRoutingProxyInfo() &&
lu.CanRoute(sourcelP) &&
lu.CanRoute(targetlP))
Prune(u)

else{
Continue processing...

}

4.3. NIx—Vector Aggregation

The use of th&kouting Proxieseads to another improve-

ment in the computation and storage of routes, namely the

use ofNIx—Vectoraggregation. Recall that thelx—Vector
calculation will stop when a node is found that hd&ating
Proxydefined encompassing the targfetaddress. The cal-
culatedNIx—Vectoris used to route the packet to the proxy

node, which in turn routes the packet to the final destina-

tion. However, in this case the calculatébk—\ectoiis valid
not only for the original targdP address, but for alP ad-
dressesén the proxy rangeln other words, if aNIx—\Vector
to a /16 proxy address is calculated, that sase-Vector

is correct for2'6 targets encompassed by that proxy. Thus,

In GTNetS we introduced a topology model object for
a Random TreeA random tree is defined by it's depth and
fanout values, as are normal tree objects, but extended to in
clude achild probability factor As the tree topology is be-
ing constructed, child nodes are randomly pruned based on
the child probability factor. The result is a topology olijec
with a sparse IPaddress space, with some fraction of the
possiblelP addresses unassigned. To illustrate this point,
we give an example.

Let f be the fanoutd be the depthy be the address uti-
lization ratio andp be the probability of generating a child.
In the random tree, any non—leaf node will have an expected
number of fp children. So, the expected number of leaf
nodes of the entire tree {gp)? 1.

Therefore, for a given tree witfiandd, we can calculate
the necessary to get a ratigg in the following way.

(fp ' _
fd—l
(d—1)lnp = Ing
p = e (1)

1 Presently, the implementation Nfx—Vectoraggregation irGTNetds
work—in—progress and is not complete.

3000

e 1400 ——————T
‘Payload length legend - downstream, backbone
T1KB {"100Mbps, 100Mbps
2KB H { 10Mbps, 100Mbps
N — .) O v
2500 [P P 1 v V-
/ g ' 1000
2000 |- /'/ E : 1
é /’ é 800 [
T 1500 / 2
£ / £ 600 |
£ y £
1000 /
// 400
/7
500 [s
s 200
,/ ,.
I/’)
0 2 4 6 8 10 12 14 16 0 0.2 0.4 0.6 0.8 1 12 14 16 18 2
Time Time
Figure 1. Effect of Payload size for TCP Figure 3. Effect of Bandwidth of links

3000

PP TP e ——— T 3000 T
Differing number of TCP conhections i scanrate
1thread —— 5——
2 threads
3threads ----- S
2500 i 4threads - 2500 e —
/
2000 | o 4 2000 | H /“
/ /
g g /
% 1500 % 1500 /‘“
£ £ /
1000 - 1 1000 - /
, /
500) 500 ’,/
_— /
— e
o o — 0 . I L L L L
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Time Time
Figure 2. Effect of Parallel Connections Figure 4. Effect of Scanrate for UDP worms
So equation 1 shows that the valuepaloes not depend The results in figure 3 demonstrate the effect of link

on the fanout of the tree. If it is required to generate a ran- bandwidth onUDP worm infection ratesUDP worms are
dom tree having 25% of the addresses used and a depth dfypically limited by the first—hop link bandwidth, and the re
5, we setg = 0.25 andd = 5 in equation 1 and get the re- sults show this is the case. Slower links results in slower in

sultant value op = 0.707. fection rates. Figure 4 shows tHaDP worms that send in-
fection packets at a higher rate (within the constraint ef th
5. Experimental Results first—hop link bandwidth) will spread faster than those with

slower scan rates. Finally, figure 5 shows tb&@P worms
In this section, we give some preliminary results for with larger payloads will propagate more slowly than those
worm infection rates for bothDP andTCPworms. These ~ Wwith small payloads, although this is not as pronounced as
results are intended to illustrate the capabilities of @lr ~ the TCPworms with larger payloads. This is due to the fact
NetSworm models, and not intended to show a Comprehen_thatUDP worms do not wait of acknowledgments and thus
sive study of worm infection rates. are largely independent of round trip times.
The results in figure 1 show the effect of th€P pay-
load size on on the infection rate. As expected, worms with 6, Summary
larger payloads will spread less quickly, due to more round
trip times elapsed during the payload forwarding. Results i We have introduced our worm models for tBeorgia
figure 2 show the effect of the number of simultanedG# Tech Network Simulatpand discussed a number of effi-
connections on the overall worm propagation. Again, as ex- ciency issues that must be addressed in any simulation en-
pected, the worms with fewer connections are less effective vironment designed to perform packet—level simulations of
Internet worms. A number of novel features for our simula-

3000

" payioad length
1500 bytes

2500 | 5KB P

2000 / o 4

1500 e 4

Infected hosts

1000 - /7 g

R
0 0.5 1 15 2 25 3 35 4 45
Time

Figure 5. Effect of Payload size for UDP

(9]

[10]

[11]

[12]

[13]

tor have been designed and developed, and have lead to the

capability to perform simulation studies of Internet worms

in realistic environments.

We have not yet exploited the parallel and distributed

simulation features d& TNetSor this research, but will do

so0 in the near future. Our current success in modeling mod-

erately large topologies with the sequential versioGaf

NetS coupled with earlier success modeling extremely large

topologies withGTNetS leads us to be optimistic about fu-
ture Internet scale worm models and simulation studies.

References

[1] Z. Chen, L. Gao, and K. Kwiat.
active worms. InProceedings of INFOCOM '2003EEE
Computer Society, 2003.

[2] C.Cowan, F. Wagle, C. Pu, S. Beattie, and J. Walpole. &uff

Modeling the spread of

[14]

[15]

[16]

[17]

overflows: attacks and defenses for the vulnerability of the [18]

decade. IDARPA Information Survivability Conference and
Exposition 2000Jan 2000.

[3] J. Cowie, H. Liu, J. Liu, D. Nicol, and A. Ogielski. To-
wards realistic million-node internet simulations. Ihter-
national Conference on Parallel and Distributed Procegsin
Techniques and Applicationdune 1999.

[4] J. H. Cowie, D. M. Nicol, and A. T. Ogielski. Modeling the

global internetComputing in Science and Engineerjdgn-

uary 1999.

D. J. Daley and J. GaniEpidemic Modeling: An Introduc-

tion. Cambridge University Press, 1999.

R. Fujimoto, G. Riley, K. Perumalla, A. Park, H. Wu, and

M. Ammar. Large-scale network simulation: How big?

how fast?

(5]
(6]

and Telecommunication Systems (MASCOTS08) 2003.

[7] J. O. Kephart and S. R. White. Directed graph epidemiolog

ical models of computer viruses. Rroceedings of the IEEE
Symposium on Security and Privadp91.

M. Liljenstam, D. Nicol, V. Berk, and R. Gray. Simulating
realistic network worm traffic for worm warning system de-

(8]

InProceedings of Eleventh International Sym-
posium on Modeling, Analysis and Simulation of Computer

sign and testing. IProceedings of the 2003 ACM workshop
on rapid malcodeOct 2003.

S. McCanne and S. Floyd. The LBNL network simu-
lator. Software on-line: http://www.isi.edu/nsnam, 1997
Lawrence Berkeley Laboratory.

D. Moore, V. Paxon, S. Savage, C. Shannon, S. Staniford,
and N. Weaver. Inside the slammer worfEEE Security
and Privacy Magazingl(4), July 2003.

D. Moore, C. Shannon, and K. Claffy. Code—Red: a case
study on the spread and victims of an Internet wornPio-
ceedings of the second ACM workshop on Internet Measure-
ment Nov 2002.

G. F. Riley. The Georgia Tech Network Simulator. Rro-
ceedings of the ACM SIGCOMM workshop on Models, meth-
ods and tools for reproducible network researphges 5-12.
ACM Press, 2003.

G. F. Riley, M. H. Ammar, and R. M. Fujimoto. Stateless
routing in network simulations. IRroceedings of the Eighth
International Symposium on Modeling, Analysis and Simu-
lation of Computer and Telecommunication Systehogust
2000.

G. F. Riley, M. H. Ammar, and E. W. Zegura. Efficient rout-
ing using nix-vectors. 112001 IEEE Workshop on High Per-
formance Switching and Routiniylay 2001.

A. Wagner, T. Dubendorfer, B. Plattner, and R. Hiestdixt
periences with worm propagation simulations. Froceed-
ings of the 2003 ACM workshop on rapid malcp@et 2003.

N. Weaver, V. Paxon, S. Staniford, and R. Cunningham. In
ternet worms: past, present and future: A taxonomy of com-
puter worms. IrProceedings of the 2003 ACM workshop on
rapid malcode Oct 2003.

C. Zou, L. Gao, W. Gong, and D. Towsley. Information war-
fare: Monitoring and early warning for Internet worms. In
Proceedings of the 10th ACM conference on Computer and
communication securifyOct 2003.

C. Zou, W. Gong, and D. Towsley. Worm propagation mod-
eling and analysis under dynamic quarantine defenderdn
ceedings of the 2003 ACM workshop on rapid malcddiet
2003.

